时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测

这篇具有很好参考价值的文章主要介绍了时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测

预测效果

时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测,时序预测,SSA-ESN,麻雀搜索算法,优化回声状态网络,时间序列预测
时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测,时序预测,SSA-ESN,麻雀搜索算法,优化回声状态网络,时间序列预测
时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测,时序预测,SSA-ESN,麻雀搜索算法,优化回声状态网络,时间序列预测

时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测,时序预测,SSA-ESN,麻雀搜索算法,优化回声状态网络,时间序列预测

时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测,时序预测,SSA-ESN,麻雀搜索算法,优化回声状态网络,时间序列预测

基本介绍

1.Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测(完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.SSA优化的参数为:三个参数,储备池规模,学习率,正则化系数。命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式私信回复Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-854901.html

到了这里,关于时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包