PCL 基于马氏距离KMeans点云聚类

这篇具有很好参考价值的文章主要介绍了PCL 基于马氏距离KMeans点云聚类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、简介

在诸多的聚类方法中,K-Means聚类方法是属于“基于原型的聚类”(也称为原型聚类)的方法,此类方法均是假设聚类结构能通过一组原型刻画,在现实聚类中极为常用。通常情况下,该类算法会先对原型进行初始化,然后再对原型进行迭代更新求解。采用不同的原型表示、不同的求解方式,也将会产生不同的算法。

K-Means算法作为一种经典的“原型聚类”算法,其原型选择的是“K个聚类中心”,迭代求解的方式是以相邻两次求解的“质心”(同一类所有的点的x,y,z坐标的平均值)变化程度而进行的,这也可能就是K-Means聚类名字的由来:K个聚类中心+质心(坐标平均值)

二、算法步骤

1、初始化原型,也就是指定K值和K个聚类中心。这其中聚类中心的指定可以人为的输入、也可以随机选择或者其他方式都可以,不过尽量保证聚类中心之间的距离不要选的太近。这里为了后面可以计算马氏距离,我们需要对数据先进行初始的聚类操作。
2、聚类。遍历所有数据点,计算每个数据点到这K个聚类中心的距离(我这里选择的是马氏距离,文章来源地址https://www.toymoban.com/news/detail-854970.html

到了这里,关于PCL 基于马氏距离KMeans点云聚类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习:基于Kmeans聚类算法对银行客户进行分类

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 大家好,我

    2024年02月05日
    浏览(51)
  • 【集群划分】基于kmeans的电压调节的集群划分【IEEE33节点】

      💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 ​ 🎉3 参考文献 🌈4 Matlab代码实现 高

    2024年02月05日
    浏览(38)
  • 基于TF-IDF+KMeans聚类算法构建中文文本分类模型(附案例实战)

      🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.TF-IDF算法介绍 2.TF-IDF算法步骤 3.KMeans聚类  4.项目实战 4.1加载数据 4.2中文分词 4.

    2024年02月03日
    浏览(64)
  • 基于爬虫+词云图+Kmeans聚类+LDA主题分析+社会网络语义分析对大唐不夜城用户评论进行分析

      🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 一、项目简介 二、实验过程 2.1获取数据 2.2情感分析 2.3TF-IDF+Kmeans聚类分析 2.4LDA主题

    2024年02月08日
    浏览(51)
  • 聚类算法:Kmeans和Kmeans++算法精讲

    其实Kmeans聚类算法在YOLOv2(【YOLO系列】YOLOv2论文超详细解读(翻译 +学习笔记))中我们就见到了,那时候只是简单地了解了一下。后来在这学期的数据挖掘课程的期末汇报中,我又抽中了这个算法,于是又重新学习了一遍。另外最近在看一些改进的论文,很多摘要中也都

    2024年02月05日
    浏览(38)
  • 【MATLAB第58期】基于MATLAB的PCA-Kmeans、PCA-LVQ与BP神经网络分类预测模型对比

    基于UCI葡萄酒数据集进行葡萄酒分类及产地预测 共包含178组样本数据,来源于三个葡萄酒产地,每组数据包含产地标签及13种化学元素含量,即已知类别标签。 把样本集随机分为训练集和测试集(70%训练,30%测试),根据已有数据集训练一个能进行葡萄酒产地预测的模型,以

    2024年02月16日
    浏览(37)
  • 马氏距离的求解

    ​ 马氏距离是一种可以消除单位影响的距离评价方法,可以忽略量纲对距离两点之间距离的影响。 ​ 在此将列举简单一个例子对文字性描述进行一个运算。 x y 5 10 4 6 3 11 ​ 设 x = ( x 1 , x 2 , . . . , x n ) 、 y = ( y 1 , y 2 , . . . , y n ) x=(x_1,x_2,...,x_n)、y=(y_1,y_2,...,y_n) x = ( x 1 ​ ,

    2024年02月11日
    浏览(28)
  • 机器学习---kMeans算法

    1. Load dataset 鸢(yuan1)尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类, 每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属 性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

    2024年01月16日
    浏览(41)
  • Kmeans算法(附代码)

    Kmeans算法是一个无监督机器学习算法。其基本作用就是将一堆杂乱、无序的数据归成类,是用户给定的数,它表示用户需要将数据分成个类。 首先将总的数据集中随机挑选出个数据,作为将来个类对应的质心(相当于每个类对应的老大,将来每个类的所有点都将其包围)。 从头

    2024年02月05日
    浏览(37)
  • Kmeans算法及简单案例

    选择聚类的个数k. 任意产生k个聚类,然后确定聚类中心,或者直接生成k个中心。 对每个点确定其聚类中心点。 再计算其聚类新中心。 重复以上步骤直到满足收敛要求。(通常就是确定的中心点不再改变。) Kmeans算法流程案例 将下列数据点用K-means方法进行聚类(这里使用

    2024年02月07日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包