pytorch 今日小知识2——F.avg_pool2d、clamp

这篇具有很好参考价值的文章主要介绍了pytorch 今日小知识2——F.avg_pool2d、clamp。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

今天看到
def gem(self, ipts):
    return F.avg_pool2d(ipts.clamp(min=self.eps).pow(self.p), (1, ipts.size(-1))).pow(1. / self.p)

这个函数中的F.avg_pool2d 不是很理解就查了一下

  1. ipts.clamp(1.0e-6):
    这个操作将ipts中的每个元素限制在[1.0e-6, +inf)的范围内。也就是说,任何小于1.0e-6(一个非常小的正数)的值都会被替换为1.0e-6,而大于或等于1.0e-6的值则保持不变。这样做通常是为了避免数值不稳定问题,尤其是在进行对数运算、除法运算或幂运算时。

  2. .pow(6.5):
    ipts(经过clamp操作后)中的每个元素提升到6.5的幂。

  3. F.avg_pool2d(..., (1, ipts.size(-1))):
    使用F.avg_pool2d函数对张量进行平均池化操作。这里有两个关键的参数:

    • 第一个参数是输入张量,即经过clamp和pow操作后的ipts
    • 第二个参数(1, ipts.size(-1))定义了池化窗口的大小。这里,池化窗口的高度为1(即在高度上不进行池化),而宽度为ipts的最后一个维度的大小(即ipts.size(-1))。这意味着池化操作将在最后一个维度上进行,并且沿着这个维度取平均值。
  4. .pow(1. / 6.5):
    将池化后的结果张量中的每个元素取6.5的倒数次幂。这实际上是前面.pow(6.5)操作的逆操作,用于恢复原始数据的某种形式

import torch
import torch.nn.functional as F

F.avg_pool2d()数据是四维输入
input维度: (batch_size,channels,height,width)
kenerl维度:(二维:表示width的跨度)channel和输入的channle一致,如果数据是三维,则channel为1.(如果只写一个数n,kenerl=(n,n))

stride默认和kenerl一致,这是个二维的,所以在height和width上均和kenerl一致,越界同样丢弃。跟cnn卷积一致

在H和W维度求平均文章来源地址https://www.toymoban.com/news/detail-855351.html

input=torch.randn(10,3,4,4)
m=F.avg_pool2d(input,(4,4))
print(m.size())

torch.Size([10, 3, 1, 1])
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4),stride=1)
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125, 0.8750],
         [0.8125, 0.8750]]])

到了这里,关于pytorch 今日小知识2——F.avg_pool2d、clamp的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [Pytorch]卷积运算conv2d

    torch.nn.functional.Conv2d()的详细参数: 即F.Conv2d的主要参数如下: input:输入特征图 weight:卷积核 bias:偏置参数 stride:卷积步长 padding:填充 dilation:膨胀系数 groups:分组卷积 利用F.Conv2d对图像中的暗线进行识别demo: pytorch中的卷积运算接口可使用torch.nn中的Conv2d(): pytorch官方

    2024年02月14日
    浏览(28)
  • pytorch复现_conv2d

    2024年02月06日
    浏览(32)
  • 【CNN记录】pytorch中BatchNorm2d

    torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None) 功能 :对输入的四维数组进行批量标准化处理(归一化) 计算公式如下: 对于所有的batch中样本的同一个channel的数据元素进行标准化处理,即如果有C个通道,无论batch中有多少个样

    2024年02月16日
    浏览(57)
  • 【PyTorch】nn.Conv2d函数详解

    CONV2D官方链接 in_channels:输入的通道数,RGB 图像的输入通道数为 3 out_channels:输出的通道数 kernel_size:卷积核的大小,一般我们会使用 5x5、3x3 这种左右两个数相同的卷积核,因此这种情况只需要写 kernel_size = 5这样的就行了。如果左右两个数不同,比如3x5的卷积核,那么写作

    2024年01月22日
    浏览(28)
  • Pytorch中的卷积与反卷积(conv2d和convTranspose2d)

    卷积是特征提取的常用操作,卷积可以改变图片的通道和大小,相比全连接操作,卷积可以减少计算量,并且充分融合图像的局部特征。    

    2024年02月06日
    浏览(27)
  • PyTorch 中的转置卷积 ConvTranspose2d

    现有的关于转置卷积的介绍大多流于表面,并未详细的说明这一操作内部具体的操作流程。由于转置卷积的设计主要是为了对标标准卷积,所以其实现流程与标准卷积基本相反,所以内部的操作逻辑并不直观。其按照卷积的相反逻辑的参数设置方式,这种反逻辑的形式使得我

    2024年02月17日
    浏览(29)
  • pytorch中 nn.Conv2d的简单用法

    参数介绍 : in_channels :卷积层输入通道数 out_channels :卷积层输出通道数 kernel_size :卷积层的卷积核大小 padding :填充长度 stride :卷积核移动的步长 dilation :是否采用空洞卷积 groups :是否采用分组卷积 bias :是否添加偏置参数 padding_mode : padding 的模式 如果输入大小为:

    2024年02月11日
    浏览(28)
  • Pytorch平均池化nn.AvgPool2d()使用记录

    【pytorch官方文档】 :https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html?highlight=avgpool2d#torch.nn.AvgPool2d 在由多通道组成的输入特征中进行2D平均池化计算 假设输入特征为S,输出特征为D 情况一 ceil_mode=False, count_include_pad=True(计算时包含零填充) 计算过程: 输出形状= floor[(3 - 3

    2023年04月19日
    浏览(25)
  • unity,Mathf.Clamp方法的使用

    Mathf.Clamp是Unity引擎中的一个静态方法,用于将一个值限制在指定的范围内。它可以用于限制数值、位置和旋转等属性的取值范围,以确保它们不会超出指定的范围。 Mathf.Clamp方法的语法如下: 其中,value表示要限制的值,min表示限制范围的最小值,max表示限制范围的最大值。

    2024年02月07日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包