【机器学习】小波变换在特征提取中的实践与应用

这篇具有很好参考价值的文章主要介绍了【机器学习】小波变换在特征提取中的实践与应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


【机器学习】小波变换在特征提取中的实践与应用,机器学习

在信号处理与数据分析领域,小波变换作为一种强大的数学工具,其多尺度分析特性使得它在特征提取中扮演着至关重要的角色。本文将从小波变换的基本原理出发,结合实例和代码,深入探讨小波变换在特征提取中的应用,并着重分析几种常见的基于小波变换的特征提取方法。

一、小波变换的基本原理与数学表达

小波变换的核心理念是将信号分解为一系列小波函数的叠加,这些小波函数具有有限支撑集,在正负之间振荡。通过伸缩和平移运算,小波变换能够实现对信号的多尺度聚焦分析,从而精准地提取出有用信息。
数学上,小波变换的表达形式为:
(W(a, b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} f(t) \psi \left(\frac{t-b}{a}\right) dt)
其中,(a) 和 (b) 分别代表尺度和平移量,控制着小波函数的伸缩和平移;(f(t)) 是待分析信号;(\psi) 是小波函数。尺度 (a) 与频率成反比,平移量 (b) 对应时间。

二、基于小波变换的特征提取方法与实例

基于小波变换的多尺度空间能量分布特征提取
多尺度空间能量分布特征提取方法通过分析不同尺度上信号的能量分布来提取特征。例如,在处理图像时,通过对图像进行小波变换,我们可以得到不同尺度的小波系数,这些系数反映了图像在不同频带上的能量分布。这些能量信息可以作为图像的特征,用于后续的识别或分类任务。
代码示例(使用Python和PyWavelets库):

python

import pywt
import numpy as np
import cv2

# 读取图像
img = cv2.imread('example.jpg', cv2.IMREAD_GRAYSCALE)

# 选择小波基函数和分解层次
wavelet = 'haar'
level = 1

# 对图像进行小波变换
coeffs = pywt.dwt2(img, wavelet, level=level)

# 计算各尺度空间内的能量
energies = [np.sum(np.abs(coeff)**2) for coeff in coeffs]

# 特征向量即为能量值的集合
feature_vector = np.array(energies)

基于小波变换的多尺度空间模极大值特征提取
模极大值特征提取方法利用小波变换的信号局域化分析能力,通过求解小波变换的模极大值来检测信号的局部奇异性。这种方法特别适用于检测信号中的突变点或异常值。
代码示例(模极大值提取通常需要更复杂的算法,此处仅提供小波变换的基础步骤):

python
# 使用pywt库进行一维信号的小波变换
coeffs = pywt.wavedec(signal, wavelet, level=level)

进一步分析模极大值需要自定义算法或利用专门库
…(此处省略模极大值提取的详细代码)
基于小波包变换的特征提取
小波包变换是对小波变换的扩展,能够提供更精细的频率划分。通过小波包变换,我们可以得到信号在不同频带上的最佳子空间,并提取相应的特征。
代码示例(使用PyWavelets库进行小波包变换):

python

# 进行小波包变换
coeffs = pywt.wavedec(signal, wavelet, level=level, mode='symmetric')

提取最佳子空间特征(需要自定义逻辑)
…(此处省略最佳子空间特征提取的详细代码)

三、小波变换在特征提取中的优势与展望

小波变换以其多尺度分析的能力,在特征提取中展现出独特的优势。==它能够同时捕捉信号的时域和频域信息,对于非平稳信号的处理尤为有效。==随着深度学习等技术的不断发展,小波变换与机器学习方法的结合将为特征提取带来更多的可能性。

未来,小波变换在特征提取中的应用将进一步深化和拓展,不仅局限于图像处理、信号处理等传统领域,还可能拓展到语音识别、生物信息学等新兴领域。同时,随着算法的不断优化和计算能力的提升,小波变换的效率和精度也将得到进一步提升。

综上所述,小波变换作为一种强大的数学工具,在特征提取中发挥着举足轻重的作用。通过深入研究和应用,我们有望发掘出更多小波变换在特征提取中的潜力,推动相关领域的发展。文章来源地址https://www.toymoban.com/news/detail-855373.html

到了这里,关于【机器学习】小波变换在特征提取中的实践与应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习】特征工程 - 文本特征提取TfidfVectorizer

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 对 「文本」 进行特征提取时,一般会用 「单词」 作为特征,即特征词。

    2024年02月12日
    浏览(40)
  • 机器学习---特征提取

    1.  手工特征 —— 图像 1.1  Harris 角点检测 角点的特性 :向任何方向移动变化都 很大 。 Chris_Harris 和 Mike_Stephens 早在 1988 年的文章 《A CombinedCorner and Edge Detector》 中就已经提出 了角点 检测的方法,被称为 Harris 角点检 测。他把这个简单的想法转换成了数学形式。将窗口向

    2024年01月19日
    浏览(38)
  • 机器学习图像特征提取—颜色(RGB、HSV、Lab)特征提取并绘制直方图

    目录 1 颜色特征 1.1 RGB色彩空间 1.2 HSV色彩空间 1.3 Lab色彩空间 2 使用opencv-python对图像颜色特征提取并绘制直方图 2.1 RGB颜色特征和直方图 2.2 HSV颜色特征和直方图 2.3 Lab颜色特征和直方图 RGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以

    2024年02月08日
    浏览(60)
  • AI实践与学习1_NLP文本特征提取以及Milvus向量数据库实践

    随着NLP预训练模型(大模型)以及多模态研究领域的发展,向量数据库被使用的越来越多。 在XOP亿级题库业务背景下,对于试题召回搜索单单靠着ES分片集群普通搜索已经出现性能瓶颈,因此需要预研其他技术方案提高试题搜索召回率。 现一个方案就是使用Bert等模型提取试

    2024年01月24日
    浏览(48)
  • 小波变换中的多贝西小波(DB小波函数)概述

    内容均来源于维基百科对db小波函数的介绍 多贝西小波 (英语:Daubechies Wavelet),是以比利时女性物理暨数学家英格丽·多贝西(Ingrid Daubechies)的名字命名之一种小波函数,当初英格丽·多贝西发现了一种具有阶层(hierarchy)性质的小波,便将此小波以她的名字命名。多贝西

    2023年04月08日
    浏览(36)
  • 脑电信号处理与特征提取——6.运用机器学习技术和脑电进行大脑解码(涂毅恒)

    目录 六、运用机器学习技术和脑电进行大脑解码 6.1 前言 6.2 基于脑电数据的机器学习基础分析 6.3 基于脑电数据的机器学习进阶分析 6.4 代码解读  

    2024年02月14日
    浏览(39)
  • 机器学习9:使用 TensorFlow 进行特征组合编程实践

    在【机器学习6】这篇文章中,笔者已经介绍过环境准备相关事项,本文对此不再赘述。本文将通过编程案例来探索特征组合(Feature Crosses)对模型训练的影响,加深对上一篇文章(机器学习8)的理解。 经度和纬度可以作为独立特征训练模型以预测当地房价。同时,我们也可

    2024年02月11日
    浏览(40)
  • 使用python中的pymrmr模块来进行特征提取,深入学习mRMR(最大相关最小冗余准则)

    文章目录 系列文章目录 前言 一、 最大相关最小冗余准则(mRMR)在python对应的库 ? 二、 如何安装和使用prmrmr? 1. 新建一个环境 2. 安装pymrmr库 3.如何使用pymrmr? pymrmr实验结果 总结 最大相关最小冗余准则(maximal relevance andminimal redundancy,mRMR),其核心思想是从给 定的特征集

    2024年02月06日
    浏览(39)
  • 【语音隐写】基于matlab小波变换结合奇异值分解DWT-SVD音频数字水印嵌入提取(含PSNR NC)【含Matlab源码 3889期】

    ✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。 🍎个人主页:海神之光 🏆代码获取方式: 海神之光Matlab王者学习之路—代码获取方式 ⛳️座右铭:行百里者,半于九十。 更多Matlab仿真内容点击👇 Matlab图像处理(进阶版) 路径规划

    2024年02月21日
    浏览(46)
  • 【youcans 的 OpenCV 学习课】21. Haar 小波变换

    专栏地址:『youcans 的图像处理学习课』 文章目录:『youcans 的图像处理学习课 - 总目录』 1.1 小波变换基本概念 信号变换是为了分析时间和频率之间的相互关系。 傅里叶变换(FFT)将信号表示为无限三角函数的叠加,从而将信号从时域转换到频域,可以分析信号的频谱,但

    2024年02月04日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包