目标检测网络YOLO进化之旅

这篇具有很好参考价值的文章主要介绍了目标检测网络YOLO进化之旅。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

yolo系列网络在目标检测领域取得了巨大的成功, 尤其是在工程实践中, 以其出色的性能优势获得了广泛的应用落地。

YOLO的前3个版本是由同一个作者团队出品, 算是官方版本。 之后的版本都是各个研究团队自己改进的版本, 之间并无明显的继承关系。
其中v5和v8 版本由Ultralytics 公司出品, 该公司是领先的人工智能公司,以yolov5网络出名。 该项目在github上获得了极高的关注, 获得了接近4.7万star。
项目地址: https://github.com/ultralytics/yolov5
目标检测网络YOLO进化之旅,目标检测和跟踪,目标检测,YOLO,人工智能

版本 时间 主要改进
YOLOv1 2016.05 首次提出
YOLOv2 2016.12 1 采用BN;
2 采用448*448分辨率预训练Imagenet;
3 去掉fc,采用全卷积;
4 采用anchor, 并采用k-means聚类选择anchor的先验尺寸;
5 添加一个旁路, 在更大的特征图26*26上预测
6 多尺度训练:每10batch 采用不同的输入图像尺寸,从320~608, 间隔32 :
7 提出了Darknet-19 作为backbone
YOLOv3 2018.04 1 提出了Darknet-53 作为backbone;
2 采用了FPN
YOLOv4 2020.04 1 改进了backbone,提出CSPDarknet53, 并改进了SAM, PAN, BN等模块;
2 数据增强:提出了Mosaci数据增强;提出了自对抗训练SAT;
3 采用了CIoU作为loss;
4 采用Mish作为激活函数;
5 用进化算法调了超参数
YOLOv5 2020 待补充
YOLOF 2021.03
YOLOX 2021.09
YOLOv7 2022.07
YOLOv6 2022.09
YOLOE 2022.12
YOLOv8 2023
YOLOR 2023.09
YOLOv9 2024.02

参考:
[1] https://blog.csdn.net/leonardotu/article/details/137372018文章来源地址https://www.toymoban.com/news/detail-855526.html

到了这里,关于目标检测网络YOLO进化之旅的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 目标检测与跟踪 (2)- YOLO V8配置与测试

    第一章 目标检测与跟踪 (1)- 机器人视觉与YOLO V8 目标检测与跟踪 (1)- 机器人视觉与YOLO V8_Techblog of HaoWANG的博客-CSDN博客 3D物体实时检测、三维目标识别、6D位姿估计一直是机器人视觉领域的核心研究课题,最新的研究成果也广泛应用于工业信息化领域的方方面面。通过众

    2024年02月14日
    浏览(36)
  • 目标检测与跟踪 (1)- 机器人视觉与YOLO V8

    目录 1、研究背景 2. 算法原理及对比  2.1 点对特征(Point Pairs)  2.2 模板匹配  2.3 霍夫森林  2.4 深度学习  3、YOLO家族模型演变 4、YOLO V8         机器人视觉识别技术 是移动机器人平台十分关键的技术,代表着 机器人智能化、自动化及先进性的条件判定标准 。  如何在

    2024年02月14日
    浏览(47)
  • 目标检测YOLO实战应用案例100讲-高密度交通场景下智能汽车多目标检测与跟踪算法

    目录 前言 高密度交通场景的多目标检测算法的难点 高密度交通场景的多目标跟踪算法的难点 /

    2024年02月11日
    浏览(61)
  • 目标检测与跟踪 (3)- TensorRT&YOLO V8性能优化与部署测试

    目标检测与跟踪 (1)- 机器人视觉与YOLO V8_Techblog of HaoWANG的博客-CSDN博客 目标检测与跟踪 (2)- YOLO V8配置与测试_Techblog of HaoWANG的博客-CSDN博客 目录 系列文章目录 前言 YOLO v8 TensorRT 一、TensorRT 1.1 原理 1.2 架构 1.3 功能 1.4 性能 1.5 GPU并行计算 二、安装配置 1.下载 2.安装 3. 测

    2024年02月14日
    浏览(61)
  • AI项目八:yolo5+Deepsort实现目标检测与跟踪(CPU版)

    若该文为原创文章,转载请注明原文出处。    DeepSORT 是一种计算机视觉跟踪算法,用于在为每个对象分配 ID 的同时跟踪对象。DeepSORT 是 SORT(简单在线实时跟踪)算法的扩展。DeepSORT 将深度学习引入到 SORT 算法中,通过添加外观描述符来减少身份切换,从而提高跟踪效率。

    2024年02月07日
    浏览(52)
  • 基于yolo v5与Deep Sort进行车辆以及速度检测与目标跟踪实战

    项目实验结果展示: 基于yolo v5与Deep Sort进行车辆以及速度检测与目标跟踪实战——项目可以私聊 该项目可以作为毕业设计,以及企业级的项目开发,主要包含了车辆的目标检测、目标跟踪以及车辆的速度计算,同样可以进行二次开发。 这里附上主要的检测代码 项目需求+

    2024年02月14日
    浏览(53)
  • 计算机毕业设计:python无人机目标识别+目标跟踪检测系统(OpenCV+YOLO实现) (包含文档+源码+部署教程)

    [毕业设计]2023-2024年最新最全计算机专业毕设选题推荐汇总 Python项目——毕业设计选题参考 2023年 - 2024年 最新计算机毕业设计 本科 选题大全 汇总 感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人 。 p

    2024年04月28日
    浏览(52)
  • YOLO目标检测——真实和人工智能生成的合成图像数据集下载分享

    YOLO真实和人工智能生成的合成图像数据集,真实场景的高质量图片数据,图片格式为jpg,数据场景丰富。可用于检测图像是真实的还是由人工智能生成。 数据集点击下载 :YOLO真实和人工智能生成的合成图像数据集+120000图片+数据说明.rar

    2024年02月10日
    浏览(50)
  • 毕业设计选题- 基于深度学习的海洋生物目标检测系统 YOLO 人工智能

    目录 前言 课题背景和意义 实现技术思路 一、基于深度学习的海洋生物目标检测研究主题 二、水下图像处理算法的研究 2.1Retinex算法 2.2直方图均衡化算法 2.3暗通道去雾算法 三、基于深度学习的目标检测算法 海洋生物目标检测实现效果 最后        📅大四是整个大学期间最

    2024年02月01日
    浏览(152)
  • 人工智能学习07--pytorch21--目标检测:YOLO系列理论合集(YOLOv1~v3)

    如果直接看yolov3论文的话,会发现有好多知识点没见过,所以跟着视频从头学一下。 学习up主霹雳吧啦Wz大佬的学习方法: 想学某个网络的代码时: 到网上搜这个网络的讲解 → 对这个网络大概有了印象 → 读论文原文 ( 很多细节都要依照原论文来实现, 自己看原论文十分

    2024年02月10日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包