论文阅读NAM:Normalization-based Attention Module

这篇具有很好参考价值的文章主要介绍了论文阅读NAM:Normalization-based Attention Module。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Abstarct

识别不太显著的特征是模型压缩的关键。然而,在革命性的注意力机制中却没有对其进行研究。在这项工作中,我们提出了一种新的基于归一化的注意力模块(NAM),它抑制了不太显著的权重。它对注意力模块应用了权重稀疏性惩罚,从而使它们在保持类似性能的同时具有更高的计算效率。与Resnet和Mobilenet上的其他三种注意力机制的比较表明,我们的方法具有更高的准确性。

Introduction

注意机制是近年来研究的热点之一 (Wang et al.[2017], Hu et al. [2018], Park et al. [2018], Woo et al. [2018], Gao et al. [2019]).)。它有助于深度神经网络抑制不太显著的像素或通道。先前的许多研究都集中在通过注意力操作捕捉显著特征上(Zhang et al. [2020], Misra et al. [2021])。这些方法成功地利用了来自不同维度特征的相互信息。然而,它们缺乏对权重的贡献因素的考虑,这能够进一步抑制不重要的通道或像素。受Liu et al. [2017]的启发,我们旨在利用权重的贡献因素来改善注意力机制。我们使用批量归一化的比例因子,该比例因子使用标准偏差来表示权重的重要性。这可以避免添加SE、BAM和CBAM中使用的完全连接层和卷积层。因此,我们提出了一种有效的注意力机制——基于归一化的注意力模块(NAM)。

Related work

许多先前的工作试图通过抑制不重要的权重来提高神经网络的性能。挤压和激励网络(SENet)(Hu et al[2018])将空间信息集成到通道特征响应中,并使用两个多层感知器(MLP)层计算相应的注意力。后来,瓶颈注意力模块(BAM)(Park et al. [2018]) b并行构建了分离的空间和通道子模块,它们可以嵌入到每个瓶颈块中。卷积块注意力模块(CBAM) (Woo et al. [2018]) 提供了一种按顺序嵌入通道和空间注意力子模块的解决方案,为了避免忽视跨维度交互,三重注意力模块(TAM)) (Misra et al. [2021]) 通过旋转特征图来考虑维度相关性。然而,这些工作忽略了来自训练的调谐权重的信息。因此,我们的目标是通过利用训练的模型权重的方差测量来突出显著特征。

Methodology

我们提出了NAM作为一种高效和轻量级的注意机制。我们采用了CBAM的模块集成(Woo et al[2018]),并重新设计了通道和空间注意力子模块。然后,在每个网络块的末端嵌入一个NAM模块。对于残差网络,它嵌入在残差结构的末端。对于通道注意力子模块,我们使用批量归一化(BN)的比例因子(Ioffe and Szegedy [2015]),如公式(1)所示。比例因子测量信道的方差并指示它们的重要性。

nam注意力模块,paper,论文阅读,深度学习,注意力机制,图像处理,人工智能,pytorch                                   (1)

其中和分别为小批量的平均值和标准偏差;γ和β是可训练的仿射变换参数(尺度和偏移)(Ioffe and Szegedy [2015])。通道注意力子模块如图1和方程(2)所示,其中表示输出特征。γ是每个通道的比例因子,权重为。我们还将BN的比例因子应用于空间维度,以测量像素的重要性。我们将其命名为像素归一化。相应的空间注意力子模块如图2和方程(3)所示,其中输出表示为。是比例因子,权重为。为了抑制不太显著的权重,我们将正则化项添加到损失函数中,如方程(4)所示(Liu et al[2017]),其表示输入,γ是输出;表示网络权重;是损失函数;是范数罚函数;是平衡和的惩罚。

                   (2)

                   (3)

nam注意力模块,paper,论文阅读,深度学习,注意力机制,图像处理,人工智能,pytorch                    (4)

Experiment

在本节中,我们比较了NAM与SE、BAM、CBAM和TAM在ResNet和MobileNet中的性能。我们在一个集群上使用四个Nvidia Tesla V100 GPU来评估每种方法。我们首先在CIFAR-100上运行ResNet50(Krizhevsky等人[2009]),并使用与CBAM相同的预处理和训练配置(Woo等人[2018]),p为0.0001。表1中的比较表明,单独使用通道或空间注意力的NAM优于其他四种注意力机制。然后,我们在ImageNet上运行MobileNet(Deng等人[2009]),因为它是图像分类基准的标准数据集之一。我们将p设置为0.001,其余配置与CBAM相同。表2中的比较表明,信道和空间注意力相结合的NAM优于其他三种计算复杂度相似的NAM。

nam注意力模块,paper,论文阅读,深度学习,注意力机制,图像处理,人工智能,pytorch

nam注意力模块,paper,论文阅读,深度学习,注意力机制,图像处理,人工智能,pytorch

nam注意力模块,paper,论文阅读,深度学习,注意力机制,图像处理,人工智能,pytorch

nam注意力模块,paper,论文阅读,深度学习,注意力机制,图像处理,人工智能,pytorch

Conclusion

我们提出了一个NAM模块,该模块通过抑制不太显著的特征来提高效率。我们的实验表明,NAM在ResNet和MobileNet上都提供了效率增益。我们正在对NAM在积分变化和超参数调整方面的性能进行详细分析。我们还计划利用不同的模型压缩技术对 NAM 进行优化,以提高其效率。未来,我们将研究它对其他深度学习架构和应用的影响。文章来源地址https://www.toymoban.com/news/detail-855693.html

Code

import torch.nn as nn
import torch
from torch.nn import functional as F


class Channel_Att(nn.Module):
    def __init__(self, channels, t=16):
        super(Channel_Att, self).__init__()
        self.channels = channels
      
        self.bn2 = nn.BatchNorm2d(self.channels, affine=True)


    def forward(self, x):
        residual = x

        x = self.bn2(x)
        weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())
        x = x.permute(0, 2, 3, 1).contiguous()
        x = torch.mul(weight_bn, x)
        x = x.permute(0, 3, 1, 2).contiguous()
        
        x = torch.sigmoid(x) * residual #
        
        return x


class Att(nn.Module):
    def __init__(self, channels,shape, out_channels=None, no_spatial=True):
        super(Att, self).__init__()
        self.Channel_Att = Channel_Att(channels)
  
    def forward(self, x):
        x_out1=self.Channel_Att(x)
 
        return x_out1  

到了这里,关于论文阅读NAM:Normalization-based Attention Module的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文阅读】RevIN - Reversible Instance Normalization for Accurate Time-Series Forecasting Against Distrib

    发表信息:ICLR 2022 论文地址:https://openreview.net/forum?id=cGDAkQo1C0p 时间序列预测中的主要挑战之一是数据分布漂移问题(distribution shift problem),即数据分布,比如数据的均值方差等,会随着时间而变化,这会给时序预测问题造成一定的难度(这类数据也成为非平稳数据non-sta

    2024年02月14日
    浏览(50)
  • 【论文阅读】Pay Attention to MLPs

    作者:Google Research, Brain Team 泛读:只关注其中cv的论述 提出了一个简单的网络架构,gMLP,基于门控的MLPs,并表明它可以像Transformers一样在关键语言和视觉应用中发挥作用 提出了一个基于MLP的没有self-attention结构名为gMLP,仅仅存在静态参数化的通道映射(channel projections)和

    2024年02月10日
    浏览(33)
  • [论文阅读]Visual Attention Network原文翻译

    [论文链接]https://arxiv.org/abs/2202.09741   虽然一开始是被设计用于自然语言处理任务的,但是自注意力机制在多个计算机视觉领域掀起了风暴。然而,图像的二维特性给自注意力用于计算机视觉带来了三个挑战。(1)将图像视作一维序列忽视了它们的二维结构;(2)二次复杂

    2024年02月09日
    浏览(54)
  • 论文阅读:Attention is all you need

    【最近课堂上Transformer之前的DL基础知识储备差不多了,但学校里一般讲到Transformer课程也接近了尾声;之前参与的一些科研打杂训练了我阅读论文的能力和阅读源码的能力,也让我有能力有兴趣对最最源头的论文一探究竟;我最近也想按照论文梳理一下LLM是如何一路发展而来

    2024年01月18日
    浏览(45)
  • 【论文阅读笔记】Attention Is All You Need

      这是17年的老论文了,Transformer的出处,刚发布时的应用场景是文字翻译。BLUE是机器翻译任务中常用的一个衡量标准。   在此论文之前,序列翻译的主导模型是RNN或者使用编解码器结构的CNN。本文提出的Transformer结构不需要使用循环和卷积结构,是完全基于注意力机制

    2024年04月13日
    浏览(40)
  • 论文阅读 Attention is all u need - transformer

    提出一个仅需要self attention + linear组合成encoder+decoder的模型架构 2.2.1 对比seq2seq,RNN Self Attention 输入token转为特征输入 shape [n(序列长度), D(特征维度)] 输入 进入attention模块 输出 shape [n(序列长度), D1(特征维度)] 此时每个D1被N个D做了基于attention weight的加权求和 进入MLP 输出 sha

    2024年02月01日
    浏览(38)
  • [论文阅读]Coordinate Attention for Efficient Mobile Network Design

      最近关于移动网络设计的研究已经证明了通道注意力(例如, the Squeeze-and-Excitation attention)对于提高模型的性能有显著的效果,但它们通常忽略了位置信息,而位置信息对于生成空间选择性注意图非常重要。在本文中,我们提出了一种新的移动网络注意力机制,将位置信息

    2024年02月07日
    浏览(48)
  • 论文阅读 | Cross-Attention Transformer for Video Interpolation

    前言:ACCV2022wrokshop用transformer做插帧的文章,q,kv,来自不同的图像 代码:【here】 传统的插帧方法多用光流,但是光流的局限性在于 第一:它中间会算至少两个 cost volumes,它是四维的,计算量非常大 第二:光流不太好处理遮挡(光流空洞)以及运动的边缘(光流不连续)

    2024年02月09日
    浏览(41)
  • 【PMLR21‘论文阅读】Perceiver: General Perception with Iterative Attention

    Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., Carreira, J. (18–24 Jul 2021). Perceiver: General Perception with Iterative Attention. In M. Meila T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning (Vol. 139, pp. 4651–4664). PMLR. https://proceedings.mlr.press/v139/jaegle21a.html Perceiver:迭代关注的

    2024年02月20日
    浏览(38)
  • 深度学习论文: Rethinking Mobile Block for Efficient Attention-based Models及其PyTorch实现

    深度学习论文: Rethinking Mobile Block for Efficient Attention-based Models及其PyTorch实现 Rethinking Mobile Block for Efficient Attention-based Models PDF: https://arxiv.org/pdf/2301.01146.pdf PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks EMO是高效、轻量级的模型

    2024年02月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包