《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】

这篇具有很好参考价值的文章主要介绍了《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

思维链,是一系列中间推理步骤,可以显著提高大语言模型执行复杂推理的能力。

一、思维链介绍

思维链:一种简单的提示方法,通过一系列的中间推理步骤,可以大大提高大语言模型执行复杂推理的能力。下图为使用标准提示词和使用思维链提示词的输出的区别:

《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】,LLM,论文,ChatGPT,语言模型,人工智能,自然语言处理
与传统Prompt的区别: 传统Prompt的流程是直接从输入到输出的映射,而Cot则是输入——思维链——输出。

一个完整的包含Cot的Prompt往往由指令、逻辑依据、示例三部分组成。一般来说,指令用于描述问题并且告知大模型的输出格式;逻辑依据指的是Cot的推理过程(一般包含问题的解决方案、中间推理步骤以及外部知识);示例指的是以少样本的方式为大模型提供输入输出对的基本格式,每一个示例都包含:问题、推理过程与答案。以下为更详细的介绍。

下图为COT实例:《输入——思维链——输出》
《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】,LLM,论文,ChatGPT,语言模型,人工智能,自然语言处理

1-1、指令

指令 (Instruction)

  • 作用:明确告知模型需要解决的问题或执行的任务,以及期望的输出格式。
  • 重要性:指令帮助模型理解任务的具体需求,确保输出的相关性和准确性。

示例:

问题:解释什么是光合作用?
指令:简要描述光合作用的过程,并列出它的主要作用。

1-2、逻辑依据

逻辑依据 (Rationale)

  • 作用:包括解决问题的中间步骤、相关知识的引入或理由的阐述。
  • 重要性:逻辑依据帮助模型展现推理过程,使答案更具解释性和可靠性。

示例

问题:解释什么是光合作用?
逻辑依据:光合作用是植物、藻类和某些细菌使用阳光将二氧化碳和水转化为氧气和葡萄糖的过程。这是一个复杂的多步骤过程,涉及到光反应和暗反应等阶段,主要作用是产生氧气和为生物提供能量。

1-3、示例

示例 (Exemplars)
作用:提供具体的问题、推理过程和答案实例,作为模型处理类似问题的参考。
重要性:示例可以帮助模型学习如何格式化其回答,理解问题的深层含义,以及如何引入适当的推理来支持其结论。

示例

问题:解释什么是蒸馏?
推理过程:蒸馏是一种分离混合物的技术,常用于分离液体或提纯物质。在这个过程中,混合物加热至沸点,使最易挥发的组分蒸发,然后通过冷凝再将其分离出来。
答案:蒸馏是利用物质之间沸点的差异来分离它们的过程。

二、Cot一般分类

以是否包含示例为区分,可以将Cot分为Zero-Shot-CoT 与 Few-Shot-CoT。如下图所示:

《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】,LLM,论文,ChatGPT,语言模型,人工智能,自然语言处理

2-1、Zero-Shot-CoT

Zero-Shot-CoT (零样本CoT)

  • 定义:在这种模式下,没有提供具体的示例来引导模型的行为。指令通常包括“Let’s think step by step”这样的语句来激励模型展开逐步推理。(进阶:Let’s first understand the problem and devise a plan to solve the problem. Then, let’s carry out the plan and solve the problem step by step)
  • 应用:Zero-Shot-CoT适用于那些模型已经有足够知识理解和解答的情况,不需要通过额外的示例来学习如何回答。
  • 优点:能够快速部署,无需额外准备示例,节省时间。
  • 局限:可能不如Few-Shot-CoT准确,特别是在处理非常复杂或专业性强的问题时。

案例如下所示:
《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】,LLM,论文,ChatGPT,语言模型,人工智能,自然语言处理

2-2、Few-Shot-CoT

Few-Shot-CoT (少样本CoT)

  • 定义:在指令中添加具体的示例(案例),这些示例显示了问题、推理过程和答案。这样做可以让模型模仿这些示例来提高解决问题的能力。
  • 应用:Few-Shot-CoT适用于需要模型理解特定格式或复杂问题的场景,特别是在模型原本不太可能准确回答的领域。
  • 优点:通过提供具体示例,模型可以学习特定的回答风格和推理方法,通常能够产生更准确和相关的输出。
  • 局限:需要花费更多的时间来准备有效的示例,且依赖于这些示例的质量。

案例如下所示:

《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】,LLM,论文,ChatGPT,语言模型,人工智能,自然语言处理

三、Cot的好处&缺陷&适用

3-1、Cot的好处

Cot的具体优点如下:

  • 增强大模型的推理能力: 通过将复杂问题分为多个子问题,显著提高了模型的推理能力。
  • 增强了大模型的可解释性: 相比于没有使用思维链,Cot可以向我们展示过程,让我们可以知道大模型的执行流程到底是怎样的,增加了可解释性。
  • 增强了大模型的可控性: 通过让大模型一步一步输出步骤,我们通过这些步骤的呈现可以对大模型问题求解的过程施加更大的影响,避免大模型成为无法控制的“完全黑盒”;

3-2、Cot的缺陷

Cot的缺陷如下:

  • 模型的规模太小会导致Cot失效
  • 只有对复杂任务才是有用的。
  • 示例不正确会带偏大模型。

如下图所示(使用Cot的PaLM 540B模型在GSM8K基准上表现出极高的性能):
《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】,LLM,论文,ChatGPT,语言模型,人工智能,自然语言处理

3-3、Cot的适用

Cot的适用场景如下:

  • 需要使用大模型,规模太小的不适用(20B以下)
  • 复杂任务场景,如编程
  • 增加模型参数无法使模型性能得到提升。
  • 模型的训练数据针对于任务问题有较强的关联性。

四、变体

4-1、自我验证(self-consistency checking)

自我验证(self-consistency checking)是Chain of Thought (CoT) 推理中的一个重要概念。这种方法不仅在推理过程中寻找问题的答案,而且还要检查和验证这些推理过程的逻辑一致性和正确性。自我验证的目的是提高答案的可靠性和准确性,确保模型在解答复杂问题时能够自我纠正潜在的错误或不一致之处。

如何实施自我验证
在CoT框架中,自我验证通常涉及以下几个步骤:

  • 推理生成:首先,生成一个详细的推理过程,这通常包括对问题的分析、相关信息的整合以及逐步推导出答案的逻辑链。
  • 验证步骤:在得到初步答案之后,模型会重新审视整个推理过程,检查是否存在逻辑断裂、信息错误或不一致的地方。
  • 调整和改进:基于自我验证的结果,模型可能需要调整其推理链。这可以涉及修正错误的事实信息、重新评估逻辑关系或添加缺失的逻辑步骤。
  • 最终输出:完成自我验证和必要的调整后,模型输出最终的、经过验证的答案。

应用场景

  • 自我验证特别适用于需要高度准确性的应用场景,如医学诊断、法律推理、科技问题解答等领域。在这些领域,错误的信息或推理可能导致严重的后果。通过自我验证,模型能够提供更加可靠和精确的答案。

self-consistency checking 案例如下图所示:

《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】,LLM,论文,ChatGPT,语言模型,人工智能,自然语言处理

参考文章:
Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models论文地址.
一文读懂:大模型思维链 CoT(Chain of Thought)


总结

那女孩对我说,说我保护她的梦💤文章来源地址https://www.toymoban.com/news/detail-855813.html

到了这里,关于《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读之Reasoning Implicit Sentiment with Chain-of-Thought Prompting

    本文主要对2023ACL论文《Reasoning Implicit Sentiment with Chain-of-Thought Prompting》主要内容进行介绍。 虽然情绪分析任务中通常根据输入文本中的关键意见表达来确定给定目标的情绪极性,但在隐式情绪分析(ISA)中,意见线索通常是隐含或者模糊的。因此,检测隐含情绪需要常识和

    2024年03月22日
    浏览(40)
  • 论文阅读之Multimodal Chain-of-Thought Reasoning in Language Models

    本文主要对2023一篇论文《Multimodal Chain-of-Thought Reasoning in Language Models》主要内容进行介绍。 大型语言模型(LLM)通过利用思想链(CoT)提示生成中间推理链作为推断答案的基本原理,在复杂推理方面表现出了令人印象深刻的性能。然而,现有的CoT研究主要集中在语言模态上。

    2024年03月14日
    浏览(33)
  • 谈谈NLP中 大语言模型LLM的 思维链 Chain-of-Thought(CoT)

    传送门:https://github.com/wzzzd/LLM_Learning_Note/blob/main/Tuning/chain-of-thought-prompting.md 在过去几年的探索中,业界发现了一个现象,在增大模型参数量和训练数据的同时,在多数任务上,模型的表现会越来越好。因而,现有的大模型LLM,最大参数量已经超过了千亿。 然而,增大模型参

    2024年02月12日
    浏览(35)
  • Progressive-Hint Prompting Improves Reasoning in Large Language Models

    本文是LLM系列的文章,针对《Progressive-Hint Prompting Improves Reasoning in Large Language Models》的翻译。 大型语言模型(LLM)在推理任务中的性能在很大程度上取决于提示设计,思想链(CoT)和自洽性是增强这种能力的关键方法。然而,这些方法并没有充分利用LLM生成的答案来指导后

    2024年02月12日
    浏览(24)
  • From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting

    本文是LLM系列的文章,针对《From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting》的翻译。 选择要包含在摘要中的“正确”信息量是一项艰巨的任务。一个好的总结应该是详细的、以实体为中心的,而不是过于密集和难以遵循。为了更好地理解这种权衡,我们寻求越来

    2024年02月07日
    浏览(33)
  • Generated Knowledge Prompting for Commonsense Reasoning

    本文是知识图谱系列相关的文章,针对《Generated Knowledge Prompting for Commonsense Reasoning》的翻译。 结合外部知识是否有利于常识推理,同时保持预训练序列模型的灵活性,这仍然是一个悬而未决的问题。为了研究这个问题,我们开发了生成知识提示,它包括从语言模型中生成知

    2024年02月10日
    浏览(22)
  • 责任链模式(Chain of Responsibility)

    责任链模式是对象的行为模式。使多个对象都有机会处理请求,从而避免请求的发送者和接受者直接的耦合关系。

    2024年02月05日
    浏览(33)
  • 责任链模式(Chain of Responsibility)

    命令链(Chain of Command)。 责任链是一种行为设计模式 , 允许你将请求沿着处理者链进行发送。收到请求后,每个处理者均可对请求进行处理,或将其传递给链上的下个处理者 。 1. 问题 假如你正在开发一个在线订购系统。你希望对系统访问进行限制, 只允许认证用户创建

    2024年02月11日
    浏览(26)
  • Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement

    文章链接 核心思想是通过instruction让LLM来优化问题本身,从而达到更好的效果,且这种针对问题的优化可以跟其他的prompt技术,如CoT或者Least-to-Most相结合。 作者提出了一些重述问题的准则: (1)简短:问题不要太长,确保容易理解 (2)清晰:问题表述清晰,能量化的部分

    2024年02月08日
    浏览(27)
  • 设计模式—职责链模式(Chain of Responsibility)

    目录 思维导图 什么是职责链模式? 有什么优点呢? 有什么缺点呢? 什么场景使用呢? 代码展示 ①、职责链模式 ②、加薪代码重构 使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这个对象连成一条链,并沿着这条链传递该请求,直到有

    2024年02月10日
    浏览(25)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包