代码学习第43天---动态规划

这篇具有很好参考价值的文章主要介绍了代码学习第43天---动态规划。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

随想录日记part43

t i m e : time: time 2024.04.15



主要内容:今天开始要学习动态规划的相关知识了,今天的内容主要涉及:判断子序列;不同的子序列

  • 392.判断子序列
  • 115.不同的子序列


动态规划五部曲:
【1】.确定dp数组以及下标的含义
【2】.确定递推公式
【3】.dp数组如何初始化
【4】.确定遍历顺序
【5】.举例推导dp数组

Topic1判断子序列

题目:
代码学习第43天---动态规划,代码学习记录,学习,动态规划,算法

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i][j]:长度为[0, i - 1]的s与长度为[0, j - 1]的t的最长公共子序列为dp[i][j]
2.确定递推公式:
主要就是两大情况:1.s[i - 1] 与 t[j - 1]相同 2.s[i - 1] 与 t[j - 1]不相同
如果s[i - 1] 与 t[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果s[i - 1] 与 t[j - 1]不相同,dp[i][j] = dp[i][j - 1];
3.dp数组如何初始化

 for(int i=0;i<=nums1.length;i++) dp[i][0]=0;
 for(int i=0;i<=nums2.length;i++) dp[0][i]=0;

4.确定遍历顺序
外层for循环遍历A,内层for循环遍历B。
5.举例推导dp数组
以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:
代码学习第43天---动态规划,代码学习记录,学习,动态规划,算法

class Solution {
    public boolean isSubsequence(String s, String t) {
        int n = s.length();
        int m = t.length();
        if (n > m)
            return false;
        if (n == 0)
            return true;
        // dp[i][j] 表示长度为i的序列是否是长度为j的序列的公共最长子序列的长度;
        int[][] dp = new int[n + 1][m + 1];
        // 初始化
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                if (s.charAt(i - 1) == t.charAt(j - 1))
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else
                    dp[i][j] = dp[i][j - 1];
            }
        }
        if (dp[n][m] == n)
            return true;
        else
            return false;

    }
}

时间复杂度 O ( n ∗ m ) O(n*m) O(nm)
空间复杂度 O ( n ∗ m ) O(n*m) O(nm)



Topic2不同的子序列

代码学习第43天---动态规划,代码学习记录,学习,动态规划,算法

思路:
接下来进行动规五步曲:

1.确定dp数组以及下标的含义:
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]
2.确定递推公式:
主要就是两大情况:1.s[i - 1] 与 t[j - 1]相同 2.s[i - 1] 与 t[j - 1]不相同
如果s[i - 1] 与 t[j - 1]相同,dp[i][j] = dp[i - 1][j - 1] + dp[i][j - 1];
如果s[i - 1] 与 t[j - 1]不相同,dp[i][j] = dp[i][j - 1];
3.dp数组如何初始化
代码学习第43天---动态规划,代码学习记录,学习,动态规划,算法

 for(int i=0;i<=nums1.length;i++) dp[i][0]=1;
 for(int i=0;i<=nums2.length;i++) dp[0][i]=0;

4.确定遍历顺序
外层for循环遍历A,内层for循环遍历B。
5.举例推导dp数组
以s:“baegg”,t:"bag"为例,推导dp数组状态如下:
代码学习第43天---动态规划,代码学习记录,学习,动态规划,算法

class Solution {
    public int numDistinct(String s, String t) {
        int n = s.length();
        int m = t.length();
        if (m > n)
            return 0;
        int[][] dp = new int[n + 1][m + 1];
        for (int i = 0; i < n + 1; i++)
            dp[i][0] = 1;
        for (int i = 1; i < n + 1; i++) {
            for (int j = 1; j < m + 1; j++) {
                if (s.charAt(i - 1) == t.charAt(j - 1)) {
                    dp[i][j] = (dp[i - 1][j - 1] + dp[i - 1][j]) % ((int) 1e9 + 7);
                } else {
                    dp[i][j] = dp[i - 1][j] % ((int) 1e9 + 7);
                }
            }
        }
        return dp[n][m];
    }
}

时间复杂度 O ( n ∗ m ) O(n*m) O(nm)
空间复杂度 O ( n ∗ m ) O(n*m) O(nm)文章来源地址https://www.toymoban.com/news/detail-856183.html

到了这里,关于代码学习第43天---动态规划的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法】算法学习七:动态规划 | 背包问题 | 最长公共子串(含源代码)

    背包问题是一种经典的组合优化问题,通常有两个版本:0-1背包问题和无限背包问题。 0-1背包问题是指给定一个背包容量和一组物品,每个物品有自己的重量和价值,要求在不超过背包容量的情况下,选择一些物品放入背包,使得物品的总价值最大化。每个物品只能选择放入

    2024年02月09日
    浏览(48)
  • 【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 打印。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印dp日志和

    2024年02月22日
    浏览(50)
  • 算法记录 | 48 动态规划

    思路: 1.确定dp数组(dp table)以及下标的含义: dp[i]:前 i 间房屋所能偷窃到的最高金额。 2.确定递推公式: dp[i] = max(dp[i - 2] + nums[i-1], dp[i - 1]) i间房屋的最后一个房子是nums[i−1]。 如果房屋数大于等于 2 间,则偷窃第 i−1 间房屋的时候,就有两种状态: 偷窃第 i−1 间房屋

    2024年02月05日
    浏览(37)
  • 算法记录 | Day46 动态规划

    思路: 1.确定dp数组以及下标的含义 dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词 。 2.确定递推公式 如果 s[0: j] 可以拆分为单词(即 dp[j] == True ),并且字符串 s[j: i] 出现在字典中,则 dp[i] = True 。 如果 s[0: j] 不可以拆分为单词(即

    2024年02月02日
    浏览(39)
  • 算法记录 | Day38 动态规划

    对于动态规划问题,将拆解为如下五步曲 确定dp数组(dp table)以及下标的含义 确定递推公式 dp数组如何初始化 确定遍历顺序 举例推导dp数组 思路: 确定dp数组(dp table)以及下标的含义:dp[i]的定义为:第i个数的斐波那契数值是dp[i] 确定递推公式:状态转移方程 dp[i] = dp

    2023年04月22日
    浏览(44)
  • 算法记录 | Day55 动态规划

    思路: 1.确定dp数组(dp table)以及下标的含义: dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为 dp[i][j] 。 2.确定递推公式: if (s[i - 1] == t[j - 1]) t中找到了一个字符在s中也出现了, dp[i][j] = dp[i - 1][j - 1] + 1 if (s[i - 1] != t[j - 1]) 相当于t要

    2024年02月03日
    浏览(49)
  • 算法记录 | Day45 动态规划

    改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢? 1阶,2阶,… m阶就是物品,楼顶就是背包。 每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。 问跳到楼顶有几种方法其实就是问装满背包有几种方法。 此时大家

    2024年02月11日
    浏览(33)
  • 算法记录 | Day53 动态规划

    思路: 本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了,但要有相对顺序,即:“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。 1.确定dp数组(dp table)以及下标的含义 dp[i][j] :长度为[0, i - 1]的字符串text1与长度为[0,

    2024年02月03日
    浏览(50)
  • Day 42算法记录| 动态规划 08

    单词就是物品,字符串s就是背包 1.dp[0]背包啥也不要用装,true。 2. for循环,顺序很重要,所以先背包再物品 如果求组合数就是外层for循环遍历物品,内层for遍历背包 。 如果求排列数就是外层for遍历背包,内层for循环遍历物品 。 3.递归: 要么装包或者不装 添加链接描述 把

    2024年02月15日
    浏览(31)
  • Day36算法记录|动态规划 dp02

    步骤回顾: C语言版本写的很清楚 对应得Java版本视频解析 方法一: 动态规划 1 确定dp数组(dp table)以及下标的含义 dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。 2 . 确定递推公式 ,求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。 3. dp数

    2024年02月12日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包