AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战

这篇具有很好参考价值的文章主要介绍了AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

在当今信息时代,数据已经成为企业的核心资产之一。对于许多企业而言,信息安全和私密性是至关重要的,因此对外部服务提供的数据接口存在天然的警惕性。因此常规的基于在线大模型接口落地企业知识库项目,很难满足这些企业的安全需求。面对这样的挑战,只有私有化的部署方案才能满足企业需求;

在实战篇2中《AI大模型探索之路-实战篇2:基于CVP架构-企业级知识库实战落地》,设计实现了基于CVP架构的企业知识库。本篇文章中将对企业知识库进行进一步的改造升级,以满足企业安全性方面的需求;利用开源的GLM大模型,进行私有化部署,重新设计落地整个企业级知识库。

概述

在构建企业知识库的过程中,通常会涉及两种类型的大模型API:嵌入向量化模型和LLM语言分析处理模型。为了确保企业的安全性需求得到满足,我们采用开源的GLM大模型进行私有化部署,并重新设计了整个知识库机器人的架构。接下来,我们将深入探讨这一改造升级过程。
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

一、本地知识库核心架构回顾(RAG)

1. 知识数据向量化

首先,通过文档加载器加载本地知识库数据,然后使用文本拆分器将大型文档拆分为较小的块,便于后续处理。接着,对拆分的数据块进行Embedding向量化处理,最后将向量化后的数据存储到向量数据库中以便于检索。
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

2. 知识数据检索返回

根据用户输入,使用检索器从向量数据库中检索相关的数据块。然后,利用包含问题和检索到的数据的提示,交给ChatModel / LLM(聊天模型/语言生成模型)生成答案。
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

二、大模型选择

1. 模型选择标准

1)开源的:需要选择开源的项目方便自主扩展。
2)高性能的:选择各方面性能指标比较好的,能够提升用户体验。
3)可商用的:在不增加额外成本的前提下,保证模型的商用可行性。
4)低成本部署的:部署时要能够以最低成本代价部署运行知识库,降低公司成本开支。
5)中文支持:需要选择对我母语中文支持性比较好的模型,能够更好的解析理解中文语义。

2. ChatGLM3-6B

ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,也是目前各方面性能比较突出的大模型:
1)更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。
2)更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
3)更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K。

三、Embedding模型选择

我们要选择一个开源免费的、中文支持性比较好的,场景合适的,各方面排名靠前的嵌入模型。
MTEB排行榜是衡量文本嵌入模型在各种嵌入任务上性能的重要基准;可从排行榜中选相应的Enbedding模型;
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

本次从中选择使用比较广泛的 bge-large-zh-v1.5 (同样也是智谱AI的开源模型)
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

四、改造后的技术选型

1)LLM模型:ChatGLM3-6B
2)Embedding模型:bge-large-zh-v1.5
3)应用开发框架:LangChain
4)向量数据库:FAISS/pinecone/Milvus
5)WEB框架:streamlit/gradio

五、资源准备

将 Hugging Face Hub 上的预训练模型,下载到本地使用更方便,性能更快。

1. 安装git-lfs

1)需要先安装Git LFS ,Ubuntu系统操作命令:

curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs

AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

Centos命令参考:

curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.rpm.sh | sudo bash
sudo yum install git-lfs

2)执行:git lfs install

AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

2. 下载GLM模型

下载使用huggingface上的大模型

git clone https://huggingface.co/THUDM/chatglm3-6b

AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

注意:下载后记得和huggingface上的文件列表对比,看看是否有缺失,缺少了单独下载补全。

3. 下载Embeding模型

下载huggingface上的词嵌入模型

git clone https://huggingface.co/BAAI/bge-large-zh-v1.5

AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

注意:下载后记得和huggingface上的文件列表对比,看看是否有缺失,缺少了单独下载补全。

对比后发现果然少了pytorch_model.bin文件
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

手动单独下载pytorch_model.bin文件

wget https://huggingface.co/BAAI/bge-large-zh-v1.5/resolve/main/pytorch_model.bin

结果下载超时了😅😅😅
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

后发现国内gitee上有一个hf-models; 专门放的hugginface的模型。😄
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

改用gitee地址下载

git clone https://gitee.com/hf-models/bge-large-zh-v1.5.git

果然皇天不负苦心人。。。。😀
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

六、代码落地实践

1. Embedding代码改造

将原来的openai嵌入模型

def get_openaiEmbedding_model():
    return OpenAIEmbeddings(openai_api_key=Keys.OPENAI_API_KEY,
                            openai_api_base=Keys.OPENAI_API_BASE)

改造替换为私有嵌入模型:

# 私有嵌入模型部署
embedding_model_dict = {
    #"text2vec3": "shibing624/text2vec-base-chinese",
    #"baaibge": "BAAI/bge-large-zh-v1.5",
    #"text2vec3": "/root/autodl-tmp/text2vec-base-chinese",
    "baaibge": "/root/autodl-tmp/bge-large-zh-v1.5",
}

def get_embedding_model(model_name="baaibge"):
    """
    加载embedding模型
    :param model_name:
    :return:
    """
    encode_kwargs = {"normalize_embeddings": False}
    model_kwargs = {"device": "cuda:0"}
    print(embedding_model_dict[model_name])
    return HuggingFaceEmbeddings(
        model_name=embedding_model_dict[model_name],
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs
    )

2. LLM代码改造

将原来的OpenAI的LLM模型

def get_openai_model():
    llm_model = ChatOpenAI(openai_api_key=Keys.OPENAI_API_KEY,
                           model_name=Keys.MODEL_NAME,
                           openai_api_base=Keys.OPENAI_API_BASE,
                           temperature=0)
    return llm_model

改造为GLM的LLM模型

def get_chatglm3_6b_model(model_path=keys.Keys.CHATGLM3_MODEL_PATH):
    MODEL_PATH = os.environ.get('MODEL_PATH', model_path)
    llm = chatglm3()
    llm.load_model(model_name_or_path=MODEL_PATH)
    return llm

chatglm3说明:由于langchain中暂未集成ChatGLM,因此需要自己封装一个ChatGLM的类

import json
from langchain.llms.base import LLM
from transformers import AutoTokenizer, AutoModel, AutoConfig
from typing import List, Optional
import os,yaml

from models.utils import tool_config_from_file


class chatglm3(LLM):
    max_token: int = 8192
    do_sample: bool = False
    #do_sample: bool = True
    temperature: float = 0.8
    top_p = 0.8
    tokenizer: object = None
    model: object = None
    history: List = []
    tool_names: List = []
    has_search: bool = False

    def __init__(self):
        super().__init__()

    @property
    def _llm_type(self) -> str:
        return "ChatGLM3"

    def load_model(self, model_name_or_path=None):
        model_config = AutoConfig.from_pretrained(
            model_name_or_path,
            trust_remote_code=True
        )
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name_or_path,
            trust_remote_code=True
        )
        self.model = AutoModel.from_pretrained(
            model_name_or_path, config=model_config, trust_remote_code=True
        ).half().cuda()

    # def tool_config_from_file(tool_name, directory="../Tool/"):
    #     """search tool yaml and return json format"""
    #     for filename in os.listdir(directory):
    #         if filename.endswith('.yaml') and tool_name in filename:
    #             file_path = os.path.join(directory, filename)
    #             with open(file_path, encoding='utf-8') as f:
    #                 return yaml.safe_load(f)
    #     return None

    def _tool_history(self, prompt: str):
        ans = []
        tool_prompts = prompt.split(
            "You have access to the following tools:\n\n")[0].split("\n\nUse a json blob")[0].split("\n")

        tool_names = [tool.split(":")[0] for tool in tool_prompts]
        self.tool_names = tool_names
        tools_json = []
        for i, tool in enumerate(tool_names):
            tool_config = tool_config_from_file(tool)
            if tool_config:
                tools_json.append(tool_config)
            else:
                ValueError(
                    f"Tool {tool} config not found! It's description is {tool_prompts[i]}"
                )

        ans.append({
            "role": "system",
            "content": "Answer the following questions as best as you can. You have access to the following tools:",
            "tools": tools_json
        })
        query = f"""{prompt.split("Human: ")[-1].strip()}"""
        return ans, query

    def _extract_observation(self, prompt: str):
        return_json = prompt.split("Observation: ")[-1].split("\nThought:")[0]
        self.history.append({
            "role": "observation",
            "content": return_json
        })
        return

    def _extract_tool(self):
        if len(self.history[-1]["metadata"]) > 0:
            metadata = self.history[-1]["metadata"]
            content = self.history[-1]["content"]
            if "tool_call" in content:
                for tool in self.tool_names:
                    if tool in metadata:
                        input_para = content.split("='")[-1].split("'")[0]
                        action_json = {
                            "action": tool,
                            "action_input": input_para
                        }
                        self.has_search = True
                        return f"""Action: ```{json.dumps(action_json, ensure_ascii=False)}
```"""
        final_answer_json = {
            "action": "Final Answer",
            "action_input": self.history[-1]["content"]
        }
        self.has_search = False
        return f"""Action: ```{json.dumps(final_answer_json, ensure_ascii=False)}```"""

    def _call(self, prompt: str, history: List = [], stop: Optional[List[str]] = ["<|user|>"]):
        print("======")
        print(prompt)
        print("======")
        if not self.has_search:
            self.history, query = self._tool_history(prompt)
        else:
            self._extract_observation(prompt)
            query = ""
        # print("======")
        # print(history)
        # print("======")
        _, self.history = self.model.chat(
            self.tokenizer,
            query,
            history=self.history,
            do_sample=self.do_sample,
            max_length=self.max_token,
            temperature=self.temperature,
        )
        response = self._extract_tool()
        history.append((prompt, response))
        return response

3. 测试运行

在knowledge_base_v2 下运行:streamlit run knowledge_chatbot.py
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi

上传知识库,再进行对话测试
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战,AIGC-AI大模型探索之路,人工智能,AIGC,python,AI编程,语言模型,自然语言处理,agi


总结

通过私有化部署的企业知识库项目已经成功实践落地。在未来的学习中,我们将进一步探索如何优化整个架构,例如利用微调技术改善知识库性能,优化Prompt的设计,集成更强大的外挂工具以满足特殊业务需求,以及如何加强大模型应用的安全性,包括加入模型审查流程等。

👉系列篇章:AI大模型探索之路-实战篇2:基于CVP架构-企业级知识库实战落地
🔖更多专栏系列文章:AIGC-AI大模型探索之路

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。文章来源地址https://www.toymoban.com/news/detail-856354.html

到了这里,关于AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI大模型探索之路-训练篇3:大语言模型全景解读

    大规模语言模型(Large Language Models,LLM),也称大语言模型或大型语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,通常使用自监督学习方法通过大量无标注文本进行训练。 语言模型旨在对于人类语言的内在规律进行建模,从而准确预测词序列中未来

    2024年04月26日
    浏览(50)
  • AI大模型探索之路-认知篇3:大语言模型微调基础认知

    在人工智能的广阔研究领域内,大型预训练语言模型(Large Language Models, LLMs)已经成为推动技术革新的关键因素。这些模型通过在大规模数据集上的预训练过程获得了强大的语言理解和生成能力,使其能够在多种自然语言处理任务中表现出色。然而,由于预训练过程所产生的

    2024年04月24日
    浏览(46)
  • AI大模型探索之路-训练篇2:大语言模型预训练基础认知

    在人工智能的宏伟蓝图中,大语言模型(LLM)的预训练是构筑智慧之塔的基石。预训练过程通过调整庞大参数空间以吸纳数据中蕴含的知识,为模型赋予从语言理解到文本生成等多样化能力。本文将深入探讨预训练过程中的技术细节、所面临的挑战、通信机制、并行化策略以

    2024年04月25日
    浏览(46)
  • AI大模型探索之路-提升篇2:一文掌握AI大模型的核心-注意力机制

    目录 前言 一、注意力机制简介 二、注意力机制的工作原理 三、注意力机制的变体 1、自注意力(Self-Attention) 2、双向注意力(Bidirectional Attention) 3、多头注意力(Multi-Head Attention) ​4、无限注意力机制(Infini-attention) 四、注意力机制在自然语言理解中的应用 五、未来展

    2024年04月15日
    浏览(44)
  • AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化

    AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据集概览 在自然语言处理领域,大语言模型预训练数据准备是一个重

    2024年04月28日
    浏览(47)
  • AI大模型探索之路-应用篇2:Langchain框架ModelIO模块—数据交互的秘密武器

    目录 前言 一、概述 二、Model 三、Prompt 五、Output Parsers 总结 随着人工智能技术的不断进步,大模型的应用场景越来越广泛。LangChain框架作为一个创新的解决方案,专为处理大型语言模型的输入输出而设计。其中,Model IO(输入输出)模块扮演着至关重要的角色,负责构建和管

    2024年04月13日
    浏览(39)
  • AI大模型探索之路-基础篇2:掌握Chat Completions API的基础与应用

    OpenAI 大模型提供了一些强大的 API,方便用户与 OpenAI 的大语言模型进行交互。除了上篇中讲到的Embeddings中需要用到的embeddings接口,其核心接口主要是Completions 和Chat Completions接口。 自动文本补全、用于生成各类文本任务的模型,可以根据给定的提示(prompt)自动生成和补全文本

    2024年04月12日
    浏览(44)
  • 【AI实战】给类ChatGPT的大语言模型外挂私有知识库

    本文使用 langChain 来给大语言模型 ChatGLM-6B 外挂一个或者多个私有知识库。 原理流程图 【原图来自】https://github.com/imClumsyPanda/langchain-ChatGLM 从文档处理角度来看,实现流程如下 【原图来自】https://github.com/imClumsyPanda/langchain-ChatGLM CUDA 11.4 Ubuntu 20.04 python 3.8.10 torch 1.13.0 langchai

    2024年02月08日
    浏览(46)
  • 构建企业级大语言模型应用的秘诀:GitHub Copilot 的实践之路

    GitHub Copilot 的开发团队分享了他们在构建能够同时为个人和企业用户带来价值的大语言模型(LLM)应用的心得体会。 本文经授权转载宝玉老师的个人博客(微博@宝玉xp),链接:https://baoyu.io/translations/llm/how-to-build-an-enterprise-llm-application-lessons-from-github-copilot 责编 | 夏萌 出处

    2024年02月04日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包