sklearn【Accuracy】准确度介绍和案例学习!

这篇具有很好参考价值的文章主要介绍了sklearn【Accuracy】准确度介绍和案例学习!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、Accuracy 介绍

在机器学习和数据科学中,准确度(Accuracy)是衡量分类模型性能的一个基本且重要的指标。准确度表示模型正确分类的样本数占总样本数的比例。Python的sklearn库提供了简单而强大的工具来训练和评估分类模型,包括计算准确度。

准确度的计算方式相对直接且简单,下面将详细解释其计算过程。

首先,我们需要明确几个概念:

  • 真正例(True Positive, TP):模型预测为正例,且实际也为正例的样本数。
  • 真反例(True Negative, TN):模型预测为反例,且实际也为反例的样本数。
  • 假正例(False Positive, FP):模型预测为正例,但实际为反例的样本数(即误报)。
  • 假反例(False Negative, FN):模型预测为反例,但实际为正例的样本数(即漏报)。

基于上述概念,准确度的计算公式如下:

Accuracy = TP + TN TP + TN + FP + FN \text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} Accuracy=TP+TN+FP+FNTP+TN

这个公式表示的是正确分类的样本数(真正例和真反例之和)除以总样本数(真正例、真反例、假正例和假反例之和)。换句话说,准确度就是模型预测正确的样本占总样本的比例。

在sklearn库中,计算准确度变得非常简单。你可以使用accuracy_score函数,它接受两个数组作为输入:一个是实际的目标值(y_true),另一个是模型预测的值(y_pred)。然后,它会自动计算并返回准确度。

二、案例学习

下面,我们将通过一个简单的示例来展示如何使用sklearn来训练一个分类模型,并计算其在测试集上的准确度。

首先,我们需要导入必要的库,并加载数据集。在这个例子中,我们将使用sklearn自带的鸢尾花(Iris)数据集,这是一个经典的多类分类问题。

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

接下来,我们需要对数据进行预处理。在这个例子中,我们将使用标准缩放(StandardScaler)来使特征具有相同的尺度,这对于许多机器学习算法来说是非常重要的。

# 数据预处理:标准缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

现在,我们可以创建一个分类模型,并使用训练数据进行训练。在这个例子中,我们将使用逻辑回归(Logistic Regression)作为分类器。

# 创建逻辑回归模型
model = LogisticRegression()

# 使用训练数据进行训练
model.fit(X_train, y_train)

训练完成后,我们可以使用模型对测试集进行预测,并使用sklearn的accuracy_score函数来计算准确度。

# 对测试集进行预测
y_pred = model.predict(X_test)

# 计算准确度
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

# Accuracy: 1.00

在上面的代码中,accuracy_score函数接受实际值(y_test)和预测值(y_pred)作为输入,并返回分类准确度。准确度是一个介于0和1之间的值,越接近1表示模型的分类性能越好。

需要注意的是,准确度虽然是一个直观的指标,但它并不总是最适合衡量模型性能的指标。特别是当数据集的类别分布不平衡时,准确度可能无法准确地反映模型的性能。在这种情况下,我们可能需要考虑其他指标,如精确度(Precision)、召回率(Recall)和F1分数(F1 Score)等。

三、总结

通过上面的示例,我们展示了如何使用sklearn来训练和评估一个分类模型,并计算其在测试集上的准确度。在实际应用中,我们可以根据具体的问题和数据集选择合适的分类模型和评估指标,以得到更准确的分类结果和性能评估。文章来源地址https://www.toymoban.com/news/detail-856496.html

到了这里,关于sklearn【Accuracy】准确度介绍和案例学习!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包