python-np.linalg-线性代数

这篇具有很好参考价值的文章主要介绍了python-np.linalg-线性代数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、线性代数计算的函数

np.linalg是NumPy库中用于线性代数运算的子模块。

1. 矩阵和向量的乘法:np.dot()
2. 矩阵的逆:np.linalg.inv(A)

矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。

3. 矩阵的转置:np.transpose(A)
4. 矩阵的行列式:np.linalg.det(A)
5. 矩阵的特征值和特征向量:np.linalg.eig()

linalg模块中,eigvals()函数可以计算矩阵的特征值,而eig()函数可以返回一个包含特征值和对应的特征向量的元组

6. 解线性方程组:np.linalg.solve()
7,范数np.linalg.norm(x, ord=None, axis=None, keepdims=False)

参数解释:文章来源地址https://www.toymoban.com/news/detail-856508.html

  • x:要计算范数的向量或矩阵
  • ord:范数的类型,默认为None,表示计算向量的二范数。可以设置为1、2、np.inf等不同的值,分别对应不同的范数计算方式
  • axis:指定沿着哪个轴计算范数,对于矩阵而言,可以选择0计算列向量的范数,1计算行向量的范数
  • keepdims:是否保持计算结果的维度,如果设置为True,则结果会保持与输入的维度相同,如果设置为False,则结果为标量
import numpy as np

# 创建一个向量
v = np.array([1, 2, 3])

# 计算向量v的二范数
norm_v = np.linalg.norm(v)

print(norm_v)

输出结果:
3.7416573867739413

# 创建一个矩阵
A = np.array([[1, 2], [3, 4]])

# 计算矩阵A的Frobenius范数,并保持维度
norm_A = np.linalg.norm(A, ord='fro', keepdims=True)

print(norm_A)

输出结果:
array([5.47722558])

到了这里,关于python-np.linalg-线性代数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python处理矩阵和线性代数问题

    如未作说明,下列方法均调用自 linalg 矩阵分解 cholesky , qr ,奇异值分解 svd 求特征值 eigvals ,共轭对称阵特征值 eigvalsh(a[, UPLO]) 特征值和 特征向量 eig ,共轭对称的特征值和向量 eigh(a[, UPLO]) 特征数字 范数 norm ,迹 trace 条件数 cond ,行列式 det ,符号 slogdet 通过SVD方法求秩

    2024年02月05日
    浏览(35)
  • 线性代数Python计算:矩阵对角化

    线性变换 T T T 的矩阵 A ∈ P n × n boldsymbol{A}in P^{ntimes n} A ∈ P n × n 的对角化,即寻求对角阵 Λ boldsymbol{Lambda} Λ ,使得 A boldsymbol{A} A ~ Λ boldsymbol{Lambda} Λ ,需分几步走: (1)解方程 det ⁡ ( λ I − A ) = 0 det(lambdaboldsymbol{I}-boldsymbol{A})=0 det ( λ I − A ) = 0 ,得根 λ 1 , λ

    2024年02月08日
    浏览(44)
  • 线性代数Python计算:线性方程组的最小二乘解

    给定ℝ上无解线性方程组 A x = b boldsymbol{Ax}=boldsymbol{b} Ax = b ,构造 A T A boldsymbol{A}^text{T}boldsymbol{A} A T A 及 A T b boldsymbol{A}^text{T}boldsymbol{b} A T b ,然后调用博文《线性方程组的通解》定义的mySolve函数,解方程组 A T A x = A T b boldsymbol{A}^text{T}boldsymbol{Ax}=boldsymbol{A}^text{T

    2023年04月08日
    浏览(56)
  • 【Python · PyTorch】线性代数 & 微积分

    本文采用Python及PyTorch版本如下: Python:3.9.0 PyTorch:2.0.1+cpu 本文为博主自用知识点提纲,无过于具体介绍,详细内容请参考其他文章。 线性代数是数学的一个分支,它的研究对象是向量、向量空间(线性空间)、线性变换及有限维的线性方程组。线性代数已被广泛地应用于

    2024年02月08日
    浏览(46)
  • 《python数学实验与建模》(2)高等数学与线性代数

    3.1 求下列积分的符号解 (1) ∫ 0 1 1 + 4 x   d x int_{0}^{1}sqrt{1+4x}~dx ∫ 0 1 ​ 1 + 4 x ​   d x (2) ∫ 0 + ∞ e − x sin ⁡ x   d x int_{0}^{+infty}e^{-x}sin x ~dx ∫ 0 + ∞ ​ e − x sin x   d x 结果: − 1 6 + 5 5 6 -frac{1}{6}+frac{5sqrt{5}}{6} − 6 1 ​ + 6 5 5 ​ ​ 1 2 frac{1}{2} 2 1 ​ 3.2 求方程 x

    2023年04月24日
    浏览(86)
  • 线性代数Python计算:二次型的标准形计算

    为寻求正交变换 y = P T x boldsymbol{y}=boldsymbol{P}^text{T}boldsymbol{x} y = P T x ,使得二次型 f = x T A x f=boldsymbol{x}^text{T}boldsymbol{Ax} f = x T Ax 的标准形为 f = y T Λ y f=boldsymbol{y}^text{T}boldsymbol{Lambda y} f = y T Λ y ,其中 Λ boldsymbol{Lambda} Λ 为一对角阵,只需要调用numpy.linalg的eigh函数

    2023年04月20日
    浏览(82)
  • Python在高等数学和线性代数中的应用

    Python数学实验与建模学习 目录 1. SymPy工具库 1.1 符号运算基础 1.2 用SymPy做符号函数画图  2. 高等数学的符号解 2.1 极限 2.2 导数  2.3 级数求和  2.4 泰勒展开  2.5 不定积分和定积分  2.6 代数方程  2.7 微分方程  3. 高等数学问题的数值解 3.1 一重积分 3.1.1 梯形计算 3.1.2 辛普森

    2024年01月25日
    浏览(50)
  • 线性代数-Python-01:向量的基本运算 - 手写Vector及numpy的基本用法

    https://github.com/Chufeng-Jiang/Python-Linear-Algebra-for-Beginner/tree/main 单位向量叫做 u hat Vector.py _globals.py main_vector.py main_numpy_vector.py

    2024年02月08日
    浏览(41)
  • AI人工智能中的数学基础原理与Python实战: 线性代数基础概述

    随着人工智能技术的不断发展,人工智能已经成为了许多行业的核心技术之一。在人工智能领域中,数学是一个非常重要的基础。线性代数是数学中的一个重要分支,它在人工智能中发挥着至关重要的作用。本文将介绍线性代数的基本概念、算法原理、具体操作步骤以及数学

    2024年04月12日
    浏览(63)
  • 线性代数的学习和整理23:用EXCEL和python 计算向量/矩阵的:内积/点积,外积/叉积

      目录 1 乘法 1.1 标量乘法(中小学乘法) 1.1.1 乘法的定义 1.1.2 乘法符合的规律 1.2 向量乘法 1.2.1 向量:有方向和大小的对象 1.2.2 向量的标量乘法 1.2.3 常见的向量乘法及结果 1.2.4 向量的其他乘法及结果 1.2.5 向量的模长(长度) 模长的计算公式 1.2.6 距离 2 向量的各种乘法 2

    2024年01月23日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包