贪心算法在找零问题中的应用

这篇具有很好参考价值的文章主要介绍了贪心算法在找零问题中的应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

引言

找零问题是一个经典的优化问题,其目标是用最少的硬币找零给定的金额。贪心算法是解决这类问题的一种常用方法,其核心思想是在每一步选择中都采取最好或最优(即最有利)的选择,从而希望能够导致全局的最好或最优的解。在找零问题中,贪心算法的策略通常是根据硬币面额从大到小进行选择。

本文将围绕找零问题展开,通过贪心算法设计解决方案,并证明在特定条件下贪心算法的有效性。同时,也将探讨贪心算法失效的情况,并设计一种通用的找零算法。

贪心算法在找零问题中的应用,c/c++,贪心算法,算法,c语言,排序算法,c++

a. 贪心算法求解找零问题

算法设计

假设我们有25美分、10美分、5美分和1美分四种面额的硬币。贪心算法的策略是尽可能多地使用面额较大的硬币,以减少硬币的总数。

  1. 初始化找零金额n
  2. 如果n大于等于25美分,则从n中减去25美分,并增加25美分硬币的数量。
  3. 如果n大于等于10美分且小于25美分,则从n中减去10美分,并增加10美分硬币的数量。
  4. 如果n大于等于5美分且小于10美分,则从n中减去5美分,并增加5美分硬币的数量。
  5. 如果n大于等于1美分且小于5美分,则从n中减去1美分,并增加1美分硬币的数量。
  6. 重复步骤2至5,直到n为0。

算法证明

要证明贪心算法在这种情况下能找到最优解,我们需要证明使用贪心策略找零所用的硬币数量是最少的。

假设存在一种更优的找零方式,它使用的硬币数量比贪心算法少。由于贪心算法总是优先使用面额较大的硬币,因此这种更优的方式必然在某个步骤中使用了比贪心算法更多的面额较小的硬币。然而,这会导致在后续步骤中可用的面额较大的硬币数量减少,从而需要更多的硬币来完成找零。这与假设更优的方式使用的硬币数量更少相矛盾。因此,贪心算法在这种情况下能找到最优解。

b. 硬币面额为c的幂时的贪心算法证明

算法设计

假设硬币面额是c的幂,即面额为C,c,…,C,c和k为整数,c>1,k≥1。在这种情况下,贪心算法依然优先使用面额较大的硬币。

算法证明

为了证明在这种情况下贪心算法总能得到最优解,我们可以使用数学归纳法。

基础情况:当k=1时,只有一种面额的硬币,贪心算法显然是最优的。

归纳假设:假设当k=m时,贪心算法是最优的。

归纳步骤:当k=m+1时,考虑使用贪心算法得到的找零方案。如果使用的最大面额的硬币数量为0,那么问题退化为k=m的情况,根据归纳假设,贪心算法是最优的。否则,如果我们使用至少一个最大面额的硬币,那么剩余的找零金额可以使用k=m的贪心算法来解决。由于归纳假设,这个子问题也是最优的。因此,当k=m+1时,贪心算法是最优的。

由数学归纳法,我们得出结论:当硬币面额为c的幂时,贪心算法总能得到最优解。

c. 设计使贪心算法失效的硬币面额组合

要使贪心算法不能保证得到最优解,我们需要设计一组特殊的硬币面额。一种常见的例子是使用1美分、3美分和4美分三种硬币。考虑找零7美分的情况,贪心算法会选择4美分和3美分,共需要两枚硬币。然而,最优解是使用两枚3美分硬币和一枚1美分硬币,共需要三枚硬币。因此,在这种情况下,贪心算法不能保证得到最优解。

d. 通用找零算法设计

算法设计

为了设计一个适用于任何k种不同面额硬币的通用找零算法,我们可以使用动态规划的方法。假设硬币面额为coins[k],找零金额为n

  1. 初始化一个大小为n+1的数组dp,其中dp[i]表示找零金额为i时所需的最少硬币数量。
  2. 对于每个金额i(从1到n),遍历所有硬币面额coins[j],如果coins[j]小于等于i,则更新dp[i]dp[i-coins[j]]+1dp[i]中的较小值。
  3. 返回dp[n]作为找零所需的最少硬币数量。

算法实现(伪代码)

function minCoins(coins, n):
    dp = array of size n+1 filled with ∞
    dp[0] = 0
    for i from 1 to n:
        for j from 0 to k-1:
            if coins[j] <= i:
                dp[i] = min(dp[i], dp[i-coins[j]] + 1)
    return dp[n]

算法实现(C代码)

#include <stdio.h>
#include <limits.h>

int minCoins(int coins[], int k, int n) {
    int dp[n+1];
    for (int i = 0; i <= n; i++) {
        dp[i] = INT_MAX;
    }
    dp[0] = 0;
    
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j < k; j++) {
            if (coins[j] <= i) {
                dp[i] = fmin(dp[i], dp[i-coins[j]] + 1);
            }
        }
    }
    
    return dp[n];
}

int main() {
    int coins[] = {1, 3, 4};
    int k = sizeof(coins) / sizeof(coins[0]);
    int n = 7;
    printf("Minimum coins needed: %d\n", minCoins(coins, k, n));
    return 0;
}

结论

贪心算法在找零问题中是一种有效的策略,特别是在硬币面额为c的幂的情况下,它总能找到最优解。然而,当硬币面额不满足特定条件时,贪心算法可能会失效。为了处理更一般的情况,我们可以使用动态规划的方法设计一个通用的找零算法,该算法能够在任何硬币面额组合下找到最优解。文章来源地址https://www.toymoban.com/news/detail-856569.html

到了这里,关于贪心算法在找零问题中的应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于贪心算法的TSP问题(c语言)

     data.txt 代码   

    2024年02月11日
    浏览(44)
  • 【算法 - 动态规划】找零钱问题Ⅲ

    在前面的动态规划系列文章中,关于如何对递归进行分析的四种基本模型都介绍完了,再来回顾一下: 从左到右模型 : arr[index ...] 从 index 之前的不用考虑, 只考虑后面的该如何选择 。 范围尝试模型 :思考 [L ,R] 两端,即 开头和结尾 处分别该如何取舍。 样本对应模型 :

    2024年04月09日
    浏览(43)
  • 动态规划实现找零钱问题(C/++语言)

    设一硬币系统有n种面值,第i种硬币的面值和重量分别为pi​和wi​,硬币面值的单位为元,且有p1​p2​⋯pn​和p1​=1,现需要给别人找Y∈Z+元钱,试确定一找零钱方案,使得所找的硬币的总重量最轻。 要求使用如下动态规划思想 设Fk​(y)表示使用前k种硬币去找y元钱时所找硬

    2024年02月03日
    浏览(31)
  • 贪心算法解决背包问题和动态规划解决0-1背包问题(c语言)

    运行结果如下: 运行结果如下: 总结: 贪心算法: 每一步都做出当时看起来最佳的选择,也就是说,它总是做出局部最优的选择。 贪心算法的设计步骤: 对其作出一个选择后,只剩下一个子问题需要求解。 证明做出贪心选择后,原问题总是存在最优解,即贪心选择总是安

    2024年02月04日
    浏览(56)
  • 探索C语言中的常见排序算法

    排序算法是计算机科学中至关重要的基础知识之一,它们能够帮助我们对数据进行有序排列,从而更高效地进行搜索、插入和删除操作。在本篇博客中,我们将深入探讨C语言中的一些常见排序算法,包括它们的工作原理、实现代码以及性能比较。 冒泡排序是一种简单但低效

    2024年02月12日
    浏览(43)
  • 带有期限的作业排序问题(贪心)

    转载【算法设计】带有期限的作业排序(贪心算法)_带时限的作业排序贪心算法-CSDN博客 主要是给自己加注释   已知:         n个作业,每个作业都有一个截止期限di,当且仅当作业i在它的期限截止以前被完成时,可获得pi的效益。 求:         可行解集合J   测试

    2024年02月05日
    浏览(50)
  • 贪心算法问题实验:贪心算法解决TSP问题

    TSP问题是指旅行商问题,即给定一组城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中有着广泛的应用。 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最

    2024年02月03日
    浏览(44)
  • 探究贪心算法:特点与实际应用

    博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客👦🏻 《java 面试题大全》 《java 专栏》 🍩惟余辈才疏学浅,临摹之作或有不妥之处,还请读者海涵指正。☕🍭 《MYSQL从入门到精通》数据库是开发者必会基础之一~ 🪁 吾期望此文有资助于尔,即使粗浅难及深广,亦

    2024年04月13日
    浏览(54)
  • 说说你对贪心算法、回溯算法的理解?应用场景?

    贪心算法,又称贪婪算法,是算法设计中的一种思想 其期待每一个阶段都是局部最优的选择,从而达到全局最优,但是结果并不一定是最优的 举个零钱兑换的例子,如果你有1元、2元、5元的钱币数张,用于兑换一定的金额,但是要求兑换的钱币张数最少 如果现在你要兑换

    2024年04月28日
    浏览(47)
  • DSt:数据结构的最强学习路线之数据结构知识讲解与刷题平台、刷题集合、问题为导向的十大类刷题算法(数组和字符串、栈和队列、二叉树、堆实现、图、哈希表、排序和搜索、动态规划/回溯法/递归/贪心/分治)总

    Algorithm:【算法进阶之路】之算法面试刷题集合—数据结构知识和算法刷题及其平台、问题为导向的十大类刷题算法(数组和字符串、链表、栈和队列、二叉树、堆、图、哈希表、排序和搜索、回溯算法、枚举/递归/分治/动态规划/贪心算法)总结 目录 相关文章

    2024年02月08日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包