目录
背影
摘要
LSTM的基本定义
LSTM实现的步骤
BILSTM神经网络
基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测
完整代码:基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89127622
效果图
结果分析
展望
参考论文
背影
基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测,长短期神经网络是一种改进党的RNN神经网络,克服了梯度爆炸的问
摘要
LSTM原理,基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测文章来源:https://www.toymoban.com/news/detail-856902.html
LSTM的基本定义
LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为它可以记忆不定时间长度的数值,区块中有一个gate能够决定input是否重要到能被记住及能不能被输出output。
图1底下是四个S函数单元,最左边函数依情况可能成为区块的input,右边三个会经过gate决定input是否能传入区块,左边第二个为input gate,如果这里产出近似于零,将把这里的值挡住,不会进到下一层。左边第三个是forget gate,当这产生值近似于零,将把区块里记住的值忘掉。第四个也就是最右边的input为output gate,他可以文章来源地址https://www.toymoban.com/news/detail-856902.html
到了这里,关于基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!