【状态机dp 动态规划】100290. 使矩阵满足条件的最少操作次数

这篇具有很好参考价值的文章主要介绍了【状态机dp 动态规划】100290. 使矩阵满足条件的最少操作次数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文涉及知识点

动态规划汇总
状态机dp

LeetCode100290. 使矩阵满足条件的最少操作次数

给你一个大小为 m x n 的二维矩形 grid 。每次 操作 中,你可以将 任一 格子的值修改为 任意 非负整数。完成所有操作后,你需要确保每个格子 grid[i][j] 的值满足:
如果下面相邻格子存在的话,它们的值相等,也就是 grid[i][j] == grid[i + 1][j](如果存在)。
如果右边相邻格子存在的话,它们的值不相等,也就是 grid[i][j] != grid[i][j + 1](如果存在)。
请你返回需要的 最少 操作数目。
示例 1:
输入:grid = [[1,0,2],[1,0,2]]
输出:0
解释:
矩阵中所有格子已经满足要求。
示例 2:
输入:grid = [[1,1,1],[0,0,0]]
输出:3
解释:
将矩阵变成 [[1,0,1],[1,0,1]] ,它满足所有要求,需要 3 次操作:
将 grid[1][0] 变为 1 。
将 grid[0][1] 变为 0 。
将 grid[1][2] 变为 1 。
示例 3:
输入:grid = [[1],[2],[3]]
输出:2
解释:
这个矩阵只有一列,我们可以通过 2 次操作将所有格子里的值变为 1 。
提示:
1 <= n, m <= 1000
0 <= grid[i][j] <= 9

原理

本题    ⟺    \iff 各列相同,相邻列不等。
操作后,一定存在最优解,各列的值全部 ∈ \in [0,9]。
将某列全部变成x,需要的操作次数 n - cnt[x],如果x<0或x>9,则cnt[x]一定为0。故将x换成y(y ∈ \in [0,9]),操作次数只会减少或不变。
如果某个最优解第col列小于0或大于9。则换成[0,9]之内和col-1列,col+1列不同的数。

动态规划

动态规划的状态表示

pre[iPre]表示处理完前c列,以iPre结束的最少操作次数。
dp[cur]表示处理完前c+1列,以cur结束的最少操作次数。
空间复杂度:O(10)

动态规划的转移方程

dp[cur] = min ⁡ x : 0 , x ! = c u r 9 p r e [ x ] + n − c n t [ c u r ] \min_{x:0,x!=cur}^9pre[x]+n-cnt[cur] minx:0,x!=cur9pre[x]+ncnt[cur]
时间复杂度:O(nm+10 × \times ×m × \times × 10)

动态规划的初始值

pre全为0。

动态规划的填表顺序

从第0列到最后一列。

动态规划的返回值

pre的最小值。

代码

template<class ELE,class ELE2>
void MinSelf(ELE* seft, const ELE2& other)
{
	*seft = min(*seft,(ELE) other);
}

template<class ELE>
void MaxSelf(ELE* seft, const ELE& other)
{
	*seft = max(*seft, other);
}

class Solution {
public:
    int minimumOperations(vector<vector<int>>& grid) {
        m_r = grid.size();
        m_c = grid[0].size();
        vector<int> pre(10);
        for (int c = 0; c < m_c; c++) {
            int cnt[10] = { 0 };
            for (int r = 0; r < m_r; r++) {
                cnt[grid[r][c]]++;
            }
            vector<int> dp(10,2'000'000);
            for (int iPre = 0; iPre < 10; iPre++) {
                for (int cur = 0; cur < 10; cur++) {
                    if (iPre == cur) { continue; }
                    MinSelf(&dp[cur], pre[iPre] + m_r - cnt[cur]);
                }
            }
            pre.swap(dp);
        }
        return *std::min_element(pre.begin(), pre.end());
    }
    int m_r, m_c;
};

【状态机dp 动态规划】100290. 使矩阵满足条件的最少操作次数,# 算法题,动态规划,算法,c++,力扣,状态机do,最少,网格

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

【状态机dp 动态规划】100290. 使矩阵满足条件的最少操作次数,# 算法题,动态规划,算法,c++,力扣,状态机do,最少,网格文章来源地址https://www.toymoban.com/news/detail-856979.html

到了这里,关于【状态机dp 动态规划】100290. 使矩阵满足条件的最少操作次数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【动态规划】简单多状态dp问题(2)买卖股票问题

    买卖股票问题 传送门:力扣309. 最佳买卖股票时机含冷冻期 题目: 1.1 题目解析 越难的dp问题,看示例只能起到了解题目的效果,一般推不出啥普遍的规律,所以接下来就是我们的算法原理,通过动归的思想去理解,才会豁然开朗! 1.2 算法原理 1.2.1 状态表示 我们需要通过经

    2024年02月12日
    浏览(56)
  • 算法沉淀 —— 动态规划篇(简单多状态dp问题上)

    几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。 以i为结尾 ,dp[i] 表示什么,通常为代求问题(具体依题目而定) 以i为开始 ,dp[i]表示什么,通常为代求问题(具体依题目而

    2024年04月11日
    浏览(43)
  • 动态规划——矩阵优化DP 学习笔记

    前置知识:矩阵、矩阵乘法。 斐波那契数列 在斐波那契数列当中, (f_1 = f_2 = 1) , (f_i = f_{i - 1} + f_{i - 2}) ,求 (f_n) 。 而分析式子可以知道,求 (f_k) 仅与 (f_{k - 1}) 和 (f_{k - 2}) 有关; 所以我们设矩阵 (F_i = begin{bmatrix} f_{i - 1} f_{i - 2} end{bmatrix}) 。 设矩阵 (text{Ba

    2024年02月08日
    浏览(56)
  • acwing算法基础之动态规划--数位统计DP、状态压缩DP、树形DP和记忆化搜索

    暂无。。。 暂无。。。 题目1 :求a~b中数字0、数字1、…、数字9出现的次数。 思路:先计算1~a中每位数字出现的次数,然后计算1~b-1中每位数字出现的次数,两个相减即是最终答案。 那么,如何计算1~a中每位数字出现的次数呢? 首先,将a的每一位存入向量num中,例如a=123

    2024年02月04日
    浏览(51)
  • 【动态规划】简单多状态dp问题(1)打家劫舍问题

    打家劫舍问题 传送门:面试题 17.16. 按摩师 题目: 1.1 题目解析 越难的dp问题,看示例只能起到了解题目的效果,一般推不出啥普遍的规律,所以接下来就是我们的算法原理,通过动归的思想去理解,才会豁然开朗! 1.2 算法原理 1.2.1 状态表示 我们需要通过经验 + 题目要求去

    2024年02月12日
    浏览(42)
  • 【动态规划专栏】专题三:简单多状态dp--------3.删除并获得点数

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年03月22日
    浏览(43)
  • AcWing算法学习笔记:动态规划(背包 + 线性dp + 区间dp + 计数dp + 状态压缩dp + 树形dp + 记忆化搜索)

    算法 复杂度 时间复杂度0(nm) 空间复杂度0(nv) 代码 算法 通过滚动数组对01背包朴素版进行空间上的优化 f[i] 与 f[i - 1]轮流交替 若体积从小到大进行遍历,当更新f[i, j]时,f[i - 1, j - vi] 已经在更新f[i, j - vi]时被更新了 因此体积需要从大到小进行遍历,当更新f[i, j]时,f[i - 1,

    2024年02月21日
    浏览(43)
  • 【动态规划 状态机dp 性能优化】3098. 求出所有子序列的能量和

    动态规划 状态机dp 性能优化 给你一个长度为 n 的整数数组 nums 和一个 正 整数 k 。 一个子序列的 能量 定义为子序列中 任意 两个元素的差值绝对值的 最小值 。 请你返回 nums 中长度 等于 k 的 所有 子序列的 能量和 。 由于答案可能会很大,将答案对 109 + 7 取余 后返回。 示

    2024年04月27日
    浏览(34)
  • 【动态规划】12简单多状态dp问题_打家劫舍II_C++ (medium)

    题目链接:leetcode打家劫舍II 目录 题目解析: 算法原理 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 编写代码 题目让我们求 在不触动警报装置的情况下  ,能够偷窃到的最高金额。 由题可得: 第一个房屋和最后一个房屋是紧挨着的 如果两间相邻的房屋在同一晚

    2024年02月02日
    浏览(47)
  • 动态规划算法学习一:DP的重要知识点、矩阵连乘算法

    三部曲如下三步: 基本原则:“空间换时间” 存储重复子问题的解,减少运算时间 底层运算:“表格操作” 用表格存储子问题的解 实现路线:“子问题划分、自底向上求解” 利用表格中存储的子问题的解,求上一层子问题的解。 矩阵连乘计算次序 可以用 加括号的方式

    2024年02月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包