大数据在生物信息学研究中的重要作用

这篇具有很好参考价值的文章主要介绍了大数据在生物信息学研究中的重要作用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.背景介绍

生物信息学是一门研究生物学信息的科学,它结合生物学、计算机科学、数学、统计学等多学科知识,涉及到生物序列数据的收集、存储、分析、比较和挖掘等方面。随着生物科学领域的快速发展,生物信息学在生物科学研究中发挥着越来越重要的作用。

大数据在生物信息学研究中的应用,主要体现在以下几个方面:

  1. 生物序列数据的收集和存储
  2. 生物序列数据的比较和分析
  3. 生物信息学知识发现和挖掘
  4. 生物信息学支持的生物学研究

在这篇文章中,我们将从以上四个方面进行阐述,并介绍大数据在生物信息学研究中的具体应用和优势。

2.核心概念与联系

2.1生物序列数据

生物序列数据是生物信息学研究的基础数据,包括DNA、RNA和蛋白质序列等。这些数据可以用字符串表示,通常以FASTA或GenBank格式存储。生物序列数据的收集和存储是生物信息学研究的基础,也是大数据应用的起点。

2.2生物信息学知识图谱

生物信息学知识图谱是一种描述生物实体和关系的图谱,可以用于表示基因、蛋白质、细胞组件、病理生物学实体等的关系。生物信息学知识图谱可以用于支持生物学研究,提高研究效率,也可以用于发现新的生物学知识。

2.3生物信息学支持的生物学研究

生物信息学支持的生物学研究,包括基因表达谱研究、基因相关性研究、基因功能预测等。这些研究可以帮助我们更好地理解生物过程,发现新的药物靶点和药物。

3.核心算法原理和具体操作步骤以及数学模型公式详细讲解

3.1生物序列数据的比较和分析

生物序列数据的比较和分析,主要包括序列对齐、序列聚类等。序列对齐可以用于找到两个序列之间的相似性,序列聚类可以用于分类和分组。

3.1.1序列对齐

序列对齐是将两个序列比较,找到它们之间的相似性的过程。常用的序列对齐算法有Needleman-Wunsch算法和Smith-Waterman算法。

Needleman-Wunsch算法的具体步骤如下:

  1. 创建一个矩阵,将第一行和第一列填充为负无穷。
  2. 对于其他单元格,计算其左上单元格和上单元格的最大值,并加上一个匹配或不匹配的分数。
  3. 从矩阵的最后一行或最后一列开始,跟踪最大值的路径,得到最佳对齐。

Smith-Waterman算法的具体步骤如下:

  1. 创建一个矩阵,将第一行和第一列填充为零。
  2. 对于其他单元格,计算其左上单元格和上单元格的最大值,并加上一个匹配或不匹配的分数。
  3. 从矩阵的最后一行或最后一列开始,跟踪最大值的路径,得到最佳对齐。

3.1.2序列聚类

序列聚类是将多个序列分组的过程。常用的序列聚类算法有UPGMA和Neighbor-Joining。

UPGMA的具体步骤如下:

  1. 计算所有序列之间的距离。
  2. 找到距离最近的两个序列,将它们聚类。
  3. 将剩下的序列与新形成的聚类的中心序列的距离,更新距离。
  4. 重复步骤2和3,直到所有序列都被聚类。

Neighbor-Joining的具体步骤如下:

  1. 计算所有序列之间的距离。
  2. 找到距离最近的两个序列,将它们聚类。
  3. 计算新形成的聚类与其他序列的距离,并更新距离。
  4. 重复步骤2和3,直到所有序列都被聚类。

3.2生物信息学知识图谱的构建和推理

生物信息学知识图谱的构建和推理,主要包括实体识别、关系抽取、知识图谱构建等。

3.2.1实体识别

实体识别是将文本中的实体识别出来的过程。常用的实体识别算法有CRF和BiLSTM。

CRF的具体步骤如下:

  1. 将文本中的单词一一映射为向量。
  2. 定义一个隐藏状态的线性 Chain CRF 模型。
  3. 使用梯度下降法训练模型。

BiLSTM的具体步骤如下:

  1. 将文本中的单词一一映射为向量。
  2. 使用BiLSTM模型对向量序列进行编码。
  3. 使用Softmax函数对编码后的向量进行分类。

3.2.2关系抽取

关系抽取是将实体和实体之间的关系识别出来的过程。常用的关系抽取算法有Rule-based方法和Machine Learning方法。

Rule-based方法的具体步骤如下:

  1. 定义一组规则,用于识别实体和关系。
  2. 使用规则匹配文本中的实体和关系。

Machine Learning方法的具体步骤如下:

  1. 将文本中的实体和关系一一映射为向量。
  2. 使用Machine Learning模型对向量序列进行分类。

3.2.3知识图谱构建

知识图谱构建是将实体和关系组合成知识图谱的过程。常用的知识图谱构建算法有TransE和RotatE。

TransE的具体步骤如下:

  1. 将实体和关系映射为向量。
  2. 使用TransE模型对向量进行转换。
  3. 计算转换后的向量与实际向量之间的距离,并优化模型。

RotatE的具体步骤如下:

  1. 将实体和关系映射为向量。
  2. 使用RotatE模型对向量进行旋转。
  3. 计算旋转后的向量与实际向量之间的距离,并优化模型。

3.3生物信息学支持的生物学研究

生物信息学支持的生物学研究,主要包括基因表达谱研究、基因相关性研究、基因功能预测等。

3.3.1基因表达谱研究

基因表达谱研究是研究基因在不同条件下表达的水平的过程。常用的基因表达谱研究算法有RMA和DESeq。

RMA的具体步骤如下:

  1. 将芯片上的原始数据转换为基于背景的数据。
  2. 使用Quantile方法对数据进行归一化。
  3. 使用Lowess方法对数据进行平滑。

DESeq的具体步骤如下:

  1. 将原始数据转换为计数数据。
  2. 使用Negative Binomial分布对计数数据进行模型建立。
  3. 使用Wald测试对差异表达基因进行检测。

3.3.2基因相关性研究

基因相关性研究是研究基因之间的相关性的过程。常用的基因相关性研究算法有Pearson相关系数和Spearman相关系数。

Pearson相关系数的计算公式如下:

$$ r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2}\sqrt{\sum (y - \bar{y})^2}} $$

Spearman相关系数的计算公式如下:

$$ rs = 1 - \frac{6\sum di^2}{n(n^2 - 1)} $$

3.3.3基因功能预测

基因功能预测是根据基因的序列特征和表达谱等信息预测基因功能的过程。常用的基因功能预测算法有PSI-BLAST和Gene Ontology。

PSI-BLAST的具体步骤如下:

  1. 使用NCBI的Non-redundant数据库进行Blast搜索。
  2. 根据Blast结果构建Position-Specific Iterated模型。
  3. 使用构建的模型对新序列进行搜索。

Gene Ontology的具体步骤如下:

  1. 将基因序列映射到Gene Ontology中的术语。
  2. 使用Fisher精确测试或FDR控制方法对映射结果进行统计检验。
  3. 根据检验结果确定基因功能。

4.具体代码实例和详细解释说明

4.1序列对齐

4.1.1Needleman-Wunsch算法

python def needleman_wunsch(seq1, seq2): len1, len2 = len(seq1), len(seq2) d = [[-float('inf')] * (len2 + 1) for _ in range(len1 + 1)] for i in range(len1 + 1): d[i][0] = 0 for j in range(len2 + 1): d[0][j] = 0 for i in range(1, len1 + 1): for j in range(1, len2 + 1): cost = 0 if seq1[i - 1] == seq2[j - 1] else 1 d[i][j] = max(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + cost) traceback = [''] * (len1 + 1) * (len2 + 1) i, j = len1, len2 while i or j: if i and j: cost = 0 if seq1[i - 1] == seq2[j - 1] else 1 if d[i][j] == d[i - 1][j - 1] + cost: traceback[i][j] = seq1[i - 1] i -= 1 j -= 1 elif d[i][j] == d[i - 1][j] + 1: traceback[i][j] = '-' i -= 1 else: traceback[i][j] = '+' j -= 1 else: traceback[i][j] = '-' if i else '+' if i: i -= 1 else: j -= 1 return ''.join(traceback[i][j] for i in range(len1 + 1) for j in range(len2 + 1))

4.1.2Smith-Waterman算法

python def smith_waterman(seq1, seq2): len1, len2 = len(seq1), len(seq2) d = [[0] * (len2 + 1) for _ in range(len1 + 1)] for i in range(len1 + 1): d[i][0] = 0 for j in range(len2 + 1): d[0][j] = 0 for i in range(1, len1 + 1): for j in range(1, len2 + 1): cost = 0 if seq1[i - 1] == seq2[j - 1] else 1 d[i][j] = max(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + cost) traceback = [''] * (len1 + 1) * (len2 + 1) i, j = len1, len2 while i or j: if i and j: cost = 0 if seq1[i - 1] == seq2[j - 1] else 1 if d[i][j] == d[i - 1][j - 1] + cost: traceback[i][j] = seq1[i - 1] i -= 1 j -= 1 elif d[i][j] == d[i - 1][j] + 1: traceback[i][j] = '-' i -= 1 else: traceback[i][j] = '+' j -= 1 else: traceback[i][j] = '-' if i else '+' if i: i -= 1 else: j -= 1 return ''.join(traceback[i][j] for i in range(len1 + 1) for j in range(len2 + 1))

4.2序列聚类

4.2.1UPGMA

python def upgma(distances): n = len(distances) if n == 1: return [0] clusters = [range(n)] new_distances = [0] * (n * (n - 1) // 2) k = 0 for i in range(n - 1): for j in range(i + 1, n): new_distances[k] = distances[i][j] k += 1 new_distances = sorted(enumerate(new_distances), key=lambda x: x[1]) new_distances = [x[1] for x in new_distances] cluster_1, cluster_2 = clusters.pop(0), clusters.pop(0) new_cluster = cluster_1 + cluster_2 new_distances_matrix = [[0] * n for _ in range(n)] for i in cluster_1: for j in cluster_2: new_distances_matrix[i][j] = distances[i][j] for i in cluster_2: new_distances_matrix[i][cluster_1[0]] = distances[i][cluster_2[0]] new_distances = [0] * (len(new_cluster) * (len(new_cluster) - 1) // 2) for i in range(len(new_cluster) - 1): for j in range(i + 1, len(new_cluster)): new_distances[k] = new_distances_matrix[i][j] k += 1 return upgma(new_distances)

4.2.2Neighbor-Joining

python def neighbor_joining(distances): n = len(distances) if n == 1: return [0] clusters = [range(n)] new_distances = [0] * (n * (n - 1) // 2) k = 0 for i in range(n - 1): for j in range(i + 1, n): new_distances[k] = distances[i][j] k += 1 new_distances = sorted(enumerate(new_distances), key=lambda x: x[1]) new_distances = [x[1] for x in new_distances] cluster_1, cluster_2 = clusters.pop(0), clusters.pop(0) new_cluster = cluster_1 + cluster_2 new_distances_matrix = [[0] * n for _ in range(n)] for i in cluster_1: for j in cluster_2: new_distances_matrix[i][j] = distances[i][j] for i in cluster_2: new_distances_matrix[i][cluster_1[0]] = distances[i][cluster_2[0]] new_distances = [0] * (len(new_cluster) * (len(new_cluster) - 1) // 2) for i in range(len(new_cluster) - 1): for j in range(i + 1, len(new_cluster)): new_distances[k] = new_distances_matrix[i][j] k += 1 return neighbor_joining(new_distances)

4.3生物信息学知识图谱的构建和推理

4.3.1实体识别

4.3.1.1CRF

```python import numpy as np from sklearn.featureextraction.text import CountVectorizer from sklearn.linearmodel import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.modelselection import traintestsplit from sklearn.metrics import accuracyscore

class CRF(Pipeline): def init(self, vectorizer, estimator): self.vectorizer = vectorizer self.estimator = estimator

def fit(self, X, y):
    self.vectorizer.fit(X)
    self.estimator.fit(self.vectorizer.transform(X), y)

def predict(self, X):
    return self.estimator.predict(self.vectorizer.transform(X))

def traincrf(X, y): Xtrain, Xtest, ytrain, ytest = traintestsplit(X, y, testsize=0.2, randomstate=42) vectorizer = CountVectorizer() estimator = LogisticRegression() crf = CRF(vectorizer, estimator) crf.fit(Xtrain, ytrain) ypred = crf.predict(Xtest) print("Accuracy:", accuracyscore(ytest, ypred))

if name == "main": X = ["The quick brown fox jumps over the lazy dog", "The quick brown dog jumps over the lazy fox"] y = [1, 0] train_crf(X, y) ```

4.3.1.2BiLSTM

```python import numpy as np from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences

class BiLSTM(Sequential): def init(self, vocabsize, embeddingdim, lstmunits, maxlength): super(BiLSTM, self).init() self.embedding = Embedding(vocabsize, embeddingdim, inputlength=maxlength) self.lstm = LSTM(lstmunits, returnsequences=True) self.dense = Dense(1, activation='sigmoid')

def fit(self, X, y):
    X_pad = pad_sequences(X, maxlen=len(X[0]))
    self.embedding.fit(X_pad)
    self.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    self.fit(X_pad, y)

def predict(self, X):
    X_pad = pad_sequences(X, maxlen=len(X[0]))
    return self.predict(X_pad).flatten()

def trainbilstm(X, y): vocabsize = len(set(X)) embeddingdim = 100 lstmunits = 256 maxlength = len(max(X, key=len)) bilstm = BiLSTM(vocabsize, embeddingdim, lstmunits, maxlength) bilstm.fit(X, y) ypred = bilstm.predict(X) print("Accuracy:", accuracyscore(y, ypred))

if name == "main": X = ["The quick brown fox jumps over the lazy dog", "The quick brown dog jumps over the lazy fox"] y = [1, 0] train_bilstm(X, y) ```

4.3.2关系抽取

4.3.2.1Rule-based方法

```python def extractrelations(sentences): relations = [] for sentence in sentences: for i in range(len(sentence) - 1): entity1 = sentence[i] entity2 = sentence[i + 1] relation = extractrelation(entity1, entity2) if relation: relations.append((entity1, entity2, relation)) return relations

def extractrelation(entity1, entity2): # 定义关系抽取规则 rules = [ (entity1, "nextto", entity2), (entity1, "near", entity2), (entity1, "after", entity2), (entity1, "before", entity2), ] for rule in rules: if rule in entity1 and rule in entity2: return rule return None ```

4.3.2.2机器学习方法

```python import numpy as np from sklearn.featureextraction.text import CountVectorizer from sklearn.linearmodel import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.modelselection import traintestsplit from sklearn.metrics import accuracyscore

class RelationClassifier(Pipeline): def init(self, vectorizer, estimator): self.vectorizer = vectorizer self.estimator = estimator

def fit(self, X, y):
    self.vectorizer.fit(X)
    self.estimator.fit(self.vectorizer.transform(X), y)

def predict(self, X):
    return self.estimator.predict(self.vectorizer.transform(X))

def trainrelationclassifier(X, y): Xtrain, Xtest, ytrain, ytest = traintestsplit(X, y, testsize=0.2, randomstate=42) vectorizer = CountVectorizer() estimator = LogisticRegression() classifier = RelationClassifier(vectorizer, estimator) classifier.fit(Xtrain, ytrain) ypred = classifier.predict(Xtest) print("Accuracy:", accuracyscore(ytest, y_pred))

if name == "main": X = [ ("The quick brown fox jumps over the lazy dog", "nextto"), ("The quick brown dog jumps over the lazy fox", "near"), ("The quick brown fox jumps after the lazy dog", "after"), ("The quick brown fox jumps before the lazy dog", "before"), ] y = ["nextto", "near", "after", "before"] trainrelationclassifier(X, y) ```

4.3.3基因功能预测

4.3.3.1PSI-BLAST

```python from Bio import SeqIO from Bio.Blast import NCBIXML

def runpsiblast(queryfasta, evalue=1e-6, numiterations=3): queryseq = next(SeqIO.parse(queryfasta, "fasta")) queryseqstr = str(queryseq) queryid = queryseq.id querydesc = queryseq.description querylen = len(queryseq)

blast_out = []
for i in range(num_iterations):
    cmd = f"psiblast -query {query_id} {query_desc} {query_len} {query_seq_str} -num_iterations {i} -evalue {evalue}"
    blast_out = NCBIXML.read(cmd)

return blast_out

def parsepsiblastresults(blastout): hits = [] for align in blastout: for hsp in align.all(): hit = { "subjectid": hsp.subjectid, "subjectlength": hsp.length, "querystart": hsp.location.start, "query_end": hsp.location.end, "identity": hsp.identity, "similarity": hsp.score, } hits.append(hit) return hits

if name == "main": queryfasta = "query.fasta" blastout = runpsiblast(queryfasta) hits = parsepsiblastresults(blast_out) print(hits) ```

4.3.3.2Gene Ontology Annotation

```python from Bio import Entrez from Bio import GenBank from Bio import SeqIO

def downloadgeneontologymap(email): handle = Entrez.efetch(db="GeneOntology", id="GO:0003674,GO:0005515,GO:0003674", retmode="xml", email=email) gomap = {} for line in handle: if line.startswith(" ") and line.find(" ") != -1: go id = line.split(" ")[1].split("\"")[1] goname = line.split(" ")[3].split("\"")[1] go map[goid] = go name return gomap

def annotategeneontology(queryfasta, gomap): queryseq = next(SeqIO.parse(queryfasta, "fasta")) queryseqstr = str(queryseq) querylen = len(query_seq)

annotations = []
for go_id, go_name in go_map.items():
    start = query_len - len(go_id)
    end = start + len(go_id)
    annotation = {
        "go_id": go_id,
        "go_name": go_name,
        "start": start,
        "end": end,
        "score": 100,
    }
    annotations.append(annotation)
return annotations

if name == "main": email = "youremail@example.com" gomap = downloadgeneontologymap(email) queryfasta = "query.fasta" annotations = annotategeneontology(queryfasta, gomap) print(annotations) ```

5未完成的工作与挑战

在大数据应用中,我们需要面对以下几个挑战: 1. 数据规模的增长:随着数据规模的增加,我们需要更高效、更快速的算法和数据处理技术。 2. 数据质量和准确性:大数据集中的噪声和不准确的信息可能会影响分析结果的准确性。我们需要开发更好的数据清洗和预处理方法。 3. 计算资源的需求:大数据处理需要大量的计算资源,这可能导致成本和能源消耗的问题。我们需要开发更高效的算法和分布式计算框架。 4. 数据隐私和安全:在处理和分析大数据时,我们需要保护数据的隐私和安全。我们需要开发更好的数据保护和隐私保护技术。 5. 数据的可视化和交互:在大数据应用中,我们需要更好的可视化和交互工具,以帮助用户更好地理解和利用分析结果。

6结论

大数据在生物信息学领域的应用具有巨大的潜力。通过大数据技术,我们可以更有效地收集、存储、分析和利用生物信息学数据,从而提高科学研究和实际应用的效率和质量。在未来,我们将继续关注大数据技术的发展,并寻求更好的方法来解决生物信息学中的挑战。

参考文献

[1] Edgar, R.C. (2004). Clustal X and Clustal Omega: tools for multiple sequence alignment. Trends in genetics, 19(1), 22-23.

[2] Sievers, F., & Huber, R. (2012). MUSCLE: multiple sequence alignment with high accuracy and speed. BMC bioinformatics, 13(Suppl 13), S1.

[3] Kim文章来源地址https://www.toymoban.com/news/detail-857158.html

到了这里,关于大数据在生物信息学研究中的重要作用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI时代下的数据隐私问题:保护个人信息的重要性

    随着人工智能(AI)技术的快速发展,数据隐私问题已经成为了日益严峻的挑战。在社交媒体、在线购物和智能设备的普及下,人们越来越担心他们的个人数据如何被收集、使用和保护。本文将探讨AI时代下数据隐私问题的重要性,并探讨如何维护和保护个人信息。 个人数据

    2024年02月05日
    浏览(28)
  • 数据预处理在数据挖掘中的重要性

    数据挖掘作为从大量数据中提取有用信息和知识的过程,其结果的准确性和可靠性直接受到数据质量的影响。因此,数据预处理在数据挖掘中扮演着至关重要的角色。让我们探讨数据质量对数据挖掘结果的影响,并介绍常见的数据预处理方法以及它们如何提高数据挖掘的效果

    2024年03月20日
    浏览(37)
  • 大数据AI在智能城市建设中的重要性

    随着人类社会的发展,城市化进程加速,人口密集度不断增加,城市规模不断扩大。智能城市作为一种应对城市化进程带来的挑战的新型城市模式,已经成为各国政府和企业的重点关注和投资对象。智能城市的核心是运用高科技手段,以大数据、人工智能、物联网等技术为驱

    2024年02月20日
    浏览(33)
  • 区块链与生物信息数据分析:实现生物研究的新方法

    生物信息学是一门研究生物数据的科学,其主要关注生物数据的收集、存储、处理、分析和挖掘。随着生物科学领域的快速发展,生物信息学也在不断发展,为生物研究提供了更多的数据和工具。然而,生物信息学数据的规模非常庞大,分布在多个数据库和平台上,这使得数

    2024年04月16日
    浏览(39)
  • 数据分析在程序员职业中的重要性及实践应用

    在当今信息化社会的快速发展中,数据分析已经成为一项重要的职业技能。不论是从事哪个行业,都需要具备一定的数据分析能力。对于程序员而言,掌握数据分析技能不仅能够提升自身在职场中的竞争力,更能够在职业生涯中获得更多的发展机会。本文将围绕数据分析在程

    2024年02月07日
    浏览(40)
  • ChatGPT 插件 “Consensus“ 实现论文搜索功能;数据工程在语言建模中的重要性

    🦉 AI新闻 🚀 ChatGPT 插件 “Consensus” 实现论文搜索功能 摘要 :OpenAI 推出了一个名为 “Consensus” 的插件,可在 ChatGPT 上进行论文搜索。用户只需用一句话描述自己想了解的问题,插件就能从 2 亿篇论文中搜索并整理出答案,并附上论文链接。插件还可根据问题写一篇简单的

    2024年02月09日
    浏览(40)
  • 机器人控制系统学习和研究中数学的重要性

    其实具备科学思维的方式非常非常难,很多情况下脑海中并非客观事实,而是充满了幻觉。     如果在各种AI工具中问及这样的问题,会得到类似如下回复: 机器人控制系统学习和研究中数学的重要性主要体现在以下几个方面: 机器人运动学:机器人控制系统需要处理机器

    2024年02月05日
    浏览(35)
  • [论文阅读] (29)李沐老师视频学习——2.研究的艺术·找问题和明白问题的重要性

    《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。由于作者的英文水平和学术能力不高,需要不断提升,所以还请大家批评指正,非常欢迎大家给我留言评论,学术路上期待与您前行,加油。 前一篇带来李沐老师对论文写作

    2024年02月01日
    浏览(34)
  • 网络安全:个人信息保护,企业信息安全,国家网络安全的重要性

    在当前的数字化时代,无论是个人,企业,还是国家,都会面临严重的网络安全威胁。网络安全不仅涉及我们的日常生活,也涉及到社会的稳定和国家的安全。这就需要我们高度重视网络安全,强化个人信息保护,企业信息安全,及国家网络安全。 首先,从个人层面来看,个

    2024年02月08日
    浏览(47)
  • 【SQL开发实战技巧】系列(三十七):数仓报表场景☞从表内始终只有近两年的数据,要求用两列分别显示其中一年的数据聊行转列隐含信息的重要性

    【SQL开发实战技巧】系列(一):关于SQL不得不说的那些事 【SQL开发实战技巧】系列(二):简单单表查询 【SQL开发实战技巧】系列(三):SQL排序的那些事 【SQL开发实战技巧】系列(四):从执行计划讨论UNION ALL与空字符串UNION与OR的使用注意事项 【SQL开发实战技巧】系列

    2023年04月18日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包