if (sameWeight && i > 0 && !weight.equals(weights[i - 1])) {
sameWeight = false;
}
}
Integer sequenceNum = Sequence.getAndIncrement();
Integer offset = sequenceNum % totalWeight;
offset = offset == 0 ? totalWeight : offset;
if (!sameWeight) {
for (String ip : ServerIps.WEIGHT_LIST.keySet()) {
Integer weight = ServerIps.WEIGHT_LIST.get(ip);
if (offset <= weight) {
return ip;
}
offset = offset - weight;
}
}
String ip = “”;
synchronized (pos) {
if (pos >= ServerIps.LIST.size()) {
pos = 0;
}
ip = ServerIps.LIST.get(pos);
pos++;
}
return ip;
}
public static void main(String[] args) {
// 连续调用11次
for (int i = 0; i < 11; i++) {
System.out.println(getServer());
}
}
}
执行结果如下
192.168.0.2
192.168.0.2
192.168.0.2
192.168.0.2
192.168.0.2
192.168.0.2
192.168.0.2
192.168.0.2
192.168.0.1
192.168.0.4
192.168.0.4
但是这种算法有一个缺点:一台服务器的权重特别大的时候,他需要连续的的处理请求,但是实际上我们想达到的效果是,对于100次请求,只要有100*8/50=16次就够了,这16次不一定要连续的访问,比如假设我们有三台服务器 servers = [A, B, C],对应的权重为 weights = [5, 1, 1] , 总权重为7,那么上述这个算法的结果是:AAAAABC,那么如果能够是这么一个结果呢:AABACAA,把B和C平均插入到5个A中间,这样是比较均衡的了。
我们这里可以改成平滑加权轮询。
平滑加权轮询
特点
思路:每个服务器对应两个权重,分别为weight 和currentWeight.其中weight是固定的,currentWeight会动态调整,初始值为0.当有新的请求进来时,遍历服务器列表,让它的currentWeight加上自身权重。遍历完成后,找到最大的 currentWeight,并将其减去权重总和,然后返回相应的服务器即可。
假设我们有三台服务器 servers = [A, B, C],对应的权重为 weights = [5, 1, 1] , 总权重为7
| 请求编号 | currentWeight 数组 (current_weight += weight) | 选择结果(max(currentWeight)) | 减去权重总和后的currentWeight 数组(max(currentWeight) -= sum(weight)) |
| — | — | — | — |
| 1 | [5, 1, 1] | A | [-2, 1, 1] |
| 2 | [3, 2, 2] | A | [-4, 2, 2] |
| 3 | [1, 3, 3] | B | [1, -4, 3] |
| 4 | [6, -3, 4] | A | [-1, -3, 4] |
| 5 | [4, -2, 5] | C | [4, -2, -2] |
| 6 | [9, -1, -1] | A | [2, -1, -1] |
| 7 | [7, 0, 0] | A | [0, 0, 0] |
如上,经过平滑性处理后,得到的服务器序列为 [A, A, B, A, C, A, A],相比之前的序列 [A, A, A, A, A, B, C],分布性要好一些。初始情况下 currentWeight = [0, 0, 0],第7个请求处理完后,currentWeight 再次变为 [0, 0, 0]。
代码实现
// 增加一个Weight类,用来保存ip, weight(固定不变的原始权重), currentweight(当前会变化的权重)
public class Weight {
private String ip;
private Integer weight;
private Integer currentWeight;
public Weight(String ip, Integer weight, Integer currentWeight) {
this.ip = ip;
this.weight = weight;
this.currentWeight = currentWeight;
}
public String getIp() {
return ip;
}
public void setIp(String ip) {
this.ip = ip;
}
public Integer getWeight() {
return weight;
}
public void setWeight(Integer weight) {
this.weight = weight;
}
public Integer getCurrentWeight() {
return currentWeight;
}
public void setCurrentWeight(Integer currentWeight) {
this.currentWeight = currentWeight;
}
}
public class WeightRoundRobinV2 {
private static Map<String, Weight> weightMap = new HashMap<String, Weight>();
public static String getServer() {
// 获取权重之和
int totalWeight = ServerIps.WEIGHT_LIST1.values().stream().reduce(0, (w1, w2) -> w1 + w2);
//初始化weightMap,初始时将currentWeight赋值为weight
if (weightMap.isEmpty()) {
ServerIps.WEIGHT_LIST1.forEach((key, value) -> {
weightMap.put(key, new Weight(key, value, value));
});
}
//找出currentWeight最大值
Weight maxCurrentWeight = null;
for (Weight weight : weightMap.values()) {
if (maxCurrentWeight == null || weight.getCurrentWeight() > maxCurrentWeight.getCurrentWeight()) {
maxCurrentWeight = weight;
}
}
//将maxCurrentWeight减去总权重和
maxCurrentWeight.setCurrentWeight(maxCurrentWeight.getCurrentWeight() - totalWeight);
//所有的ip的currentWeight统一加上原始权重
for (Weight weight : weightMap.values()) {
weight.setCurrentWeight(weight.getCurrentWeight() + weight.getWeight());
}
//返回maxCurrentWeight所对应的ip
return maxCurrentWeight.getIp();
}
public static void main(String[] args) {
// 连续调用10次
for (int i = 0; i < 10; i++) {
System.out.println(getServer());
}
}
}
ServerIps里添加数据WEIGHT_LIST1:
public static final Map<String, Integer> WEIGHT_LIST1 = new HashMap<String, Integer>();
static {
// 权重之和为50
WEIGHT_LIST1.put(“A”, 5);
WEIGHT_LIST1.put(“B”, 1);
WEIGHT_LIST1.put(“C”, 1);
}
执行结果如下:
A
A
B
A
C
A
A
A
A
B
一致性哈希算法-ConsistentHashLoadBalance
服务器集群接收到一次请求调用时,可以根据请求的信息,比如客户端的Ip地址,或请求路径与请求参数等信息进行哈希,可以得到一个哈希值,特点是对于相同的ip地址,或请求路径和请求参数哈希出来的值是不一样的,只要能再增加一个算法,能够把这个哈希值映射成一个服务端ip地址,就可以使相同的请求(相同的ip地址,或请求路径和请求参数)落到同一服务器上。
因为客户端发起的请求情况是无穷无尽的(客户端地址不同,请求参数不同等),所以对于的哈希值是无穷大的,所以我们不可能把所有的哈希值都进行映射到服务端ip上。所以这里用到了哈希环。
-
哈希值如果需要ip1和ip2之间的,则应该选择ip2作为结果;
-
哈希值如果需要ip2和ip3之间的,则应该选择ip3作为结果;
-
哈希值如果需要ip3和ip4之间的,则应该选择ip4作为结果;
-
哈希值如果需要ip4和ip1之间的,则应该选择ip1作为结果;
上面这情况是比较均匀情况,如果出现ip4服务器不存在,那就是这样了:
通过图片会发现,ip3和ip1直接的范围是比较大的,会有更多的请求落在ip1上,这是不“公平的”,解决这个问题需要加入虚拟节点,比如:
其中ip2-1, ip3-1就是虚拟结点,并不能处理节点,而是等同于对应的ip2和ip3服务器。
实际上,这只是处理这种不均衡性的一种思路,实际上就算哈希环本身是均衡的,你也可以增加更多的虚拟节点来使这个环更加平滑,比如:
这个彩环也是“公平的”,并且只有ip1,2,3,4是实际的服务器ip,其他的都是虚拟ip。
特点
-
一致性 Hash,相同参数的请求总是发到同一提供者。
-
当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。
代码实现
对于我们的服务端ip地址,我们肯定知道总共有多少个,需要多少个虚拟节点也有我们自己控制,虚拟节点越多则流量越均衡,另外哈希算法也是很关键的,哈希算法越散列流量也将越均衡。
public class ConsistentHash {
private static SortedMap<Integer, String> virtualNodes = new TreeMap<>();
private static final int VIRTUAL_NODES = 160;
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024b (备注Java)
最后
按照上面的过程,4个月的时间刚刚好。当然Java的体系是很庞大的,还有很多更高级的技能需要掌握,但不要着急,这些完全可以放到以后工作中边用别学。
学习编程就是一个由混沌到有序的过程,所以你在学习过程中,如果一时碰到理解不了的知识点,大可不必沮丧,更不要气馁,这都是正常的不能再正常的事情了,不过是“人同此心,心同此理”的暂时而已。
“道路是曲折的,前途是光明的!”
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!文章来源:https://www.toymoban.com/news/detail-857175.html
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算文章来源地址https://www.toymoban.com/news/detail-857175.html
学习过程中,如果一时碰到理解不了的知识点,大可不必沮丧,更不要气馁,这都是正常的不能再正常的事情了,不过是“人同此心,心同此理”的暂时而已。
“道路是曲折的,前途是光明的!”
[外链图片转存中…(img-SXk2nMKc-1712247705592)]
[外链图片转存中…(img-ABwszGU3-1712247705592)]
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算
到了这里,关于Java实习面试经验汇总,Dubbo-负载均衡原理解析,TCP的三次握手、四次挥手的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!