✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
物理应用 机器学习
🔥 内容介绍
斯图加特大学大地测量学和地理信息学硕士项目
该项目的核心思想是评估智能手机在海啸预警系统中的可用性。模拟了震级为 7 的地震的位移,并在数据中检测到了位移。
步骤 1:使用 Okada 程序模拟震级为 7 的地震的位移
步骤 2:根据模拟动作测量智能手机数据的动态运动的 GNSS 数据
步骤 3:通过卡尔曼滤波处理数据,检测 GNSS 数据中的智能手机位移
📣 部分代码
function varargout=okada85(varargin)
%OKADA85 Surface deformation due to a finite rectangular source.
% [uE,uN,uZ,uZE,uZN,uNN,uNE,uEN,uEE] = OKADA85(...
% E,N,DEPTH,STRIKE,DIP,LENGTH,WIDTH,RAKE,SLIP,OPEN)
% computes displacements, tilts and strains at the surface of an elastic
% half-space, due to a dislocation defined by RAKE, SLIP, and OPEN on a
% rectangular fault defined by orientation STRIKE and DIP, and size LENGTH and
% WIDTH. The fault centroid is located (0,0,-DEPTH).
%
% E,N : coordinates of observation points in a geographic referential
% (East,North,Up) relative to fault centroid (units are described below)
% DEPTH : depth of the fault centroid (DEPTH > 0)
% STRIKE : fault trace direction (0 to 360 relative to North), defined so
% that the fault dips to the right side of the trace
% DIP : angle between the fault and a horizontal plane (0 to 90)
% LENGTH : fault length in the STRIKE direction (LENGTH > 0)
% WIDTH : fault width in the DIP direction (WIDTH > 0)
% RAKE : direction the hanging wall moves during rupture, measured relative
% to the fault STRIKE (-180 to 180).
% SLIP : dislocation in RAKE direction (length unit)
% OPEN : dislocation in tensile component (same unit as SLIP)
%
% returns the following variables (same matrix size as E and N):
% uN,uE,uZ : displacements (unit of SLIP and OPEN)
% uZE,uZN : tilts (in rad * FACTOR)
% uNN,uNE,uEN,uEE : horizontal strains POSITIVE = COMPRESSION (unit of FACTOR)
%
% Length unit consistency: E, N, DEPTH, LENGTH, and WIDTH must have the same
% unit (e.g. km) which can be different from that of SLIP and OPEN (e.g. m) but
% with a possible FACTOR on tilt and strain results (in this case, an
% amplification of km/m = 1000). To have FACTOR = 1 (tilt in radians and
% correct strain unit), use the same length unit for all aforesaid variables.
%
% [...] = OKADA85(...,NU) specifies Poisson's ratio NU (default is 0.25 for
% an isotropic medium).
%
% Formulas and notations from Okada [1985] solution excepted for strain
% convention (here positive strain means compression), and for the fault
% parameters after Aki & Richards [1980], e.g.:
% DIP=90, RAKE=0 : left lateral (senestral) strike slip
% DIP=90, RAKE=180 : right lateral (dextral) strike slip
% DIP=70, RAKE=90 : reverse fault
% DIP=70, RAKE=-90 : normal fault
%
% It is also possible to produce partial outputs, with following syntax:
% [uE,uN,uZ] = OKADA85(...) for displacements only;
% [uE,uN,uZ,uZE,uZN] = OKADA85(...) for displacements and tilts;
% [uE,uN,uZ,uNN,uNE,uEN,uEE] = OKADA85(...) for displacements and strains;
% [uZE,uZN] = OKADA85(...) for tilts only;
% [uZE,uZN,uNN,uNE,uEN,uEE] = OKADA85(...) for tilts and strains;
% [uNN,uNE,uEN,uEE] = OKADA85(...) for strains only.
%
% Note that vertical strain components can be obtained with following equations:
% uNZ = -uZN;
% uEZ = -uZE;
% uZZ = -(uEE + uNN)*NU/(1-NU);
%
% [...] = OKADA85(...,'plot') or OKADA85(...) without output argument
% produces a 3-D figure with fault geometry and dislocation at scale (if
% all of the fault parameters are scalar).
%
% Equations are all vectorized excepted for argument DIP which must be
% a scalar (beacause of a singularity in Okada's equations); all other
% arguments can be scalar or matrix of the same size.
%
% Example:
%
% [E,N] = meshgrid(linspace(-10,10,50));
% [uE,uN,uZ] = okada85(E,N,2,30,70,5,3,-45,1,1,'plot');
% figure, surf(E,N,uN)
%
% considers a 5x3 fault at depth 2, N30-strike, 70-dip, and unit dislocation
% in all directions (reverse, senestral and open). Displacements are computed
% on a regular grid from -10 to 10, and North displacements are plotted as a
% surface.
%
%
% Author: Franois Beauducel <beauducel@ipgp.fr>
% Institut de Physique du Globe de Paris
% Created: 1997
% Updated: 2014-05-24
%
% References:
% Aki K., and P. G. Richards, Quantitative seismology, Freemann & Co,
% New York, 1980.
% Okada Y., Surface deformation due to shear and tensile faults in a
% half-space, Bull. Seismol. Soc. Am., 75:4, 1135-1154, 1985.
%
% Acknowledgments: Dmitry Nicolsky, Qian Yao, Halldor Geirsson
% Development history:
% [2014-05-24]: fixes a bug for tilt calculation (K1) when DIP=90.
% Detected by Halldor Geirsson.
% [2012-11-08]: solves partially mathematical singularities in
% specific cases like DIP=90, STRIKE=0, and fault reaching surface.
% Detected by Qian Yao.
% [2012-08-29]: allows vectorization of RAKE, SLIP and OPEN.
% [2011-03-08]: help review.
% [2011-03-06]: new optional argument to plot fault geometry with
% output arguments, and bug correction for the fault centroid position
% (in calculation and plot).
% [2010-11-29]: change coordinates and depth to fault centroid
% (instead of middle top edge).
% [2010-09-24]: bugs correction in the syntax of I1, K2 and uyy_tf
% functions, affecting some components. Detected by Dmitry Nicolsky.
%
% Copyright (c) 1997-2012, Franois Beauducel, covered by BSD License.
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
if nargin < 10
error('Not enough input arguments.')
end
if nargin > 12
error('Too many input arguments.')
end
if any(~cellfun(@isnumeric,varargin(1:10)))
error('Input arguments E,N,DEPTH,STRIKE,DIP,LENGTH,WIDTH,RAKE,SLIP,OPEN must be numeric.')
end
if ~isscalar(varargin{5})
error('DIP argument must be scalar.')
end
% Default values for optional input arguments
plotflag = 0; % no plot
nu = 0.25; % isotropic Poisson's ratio
% Assigns input arguments
e = varargin{1};
n = varargin{2};
depth = varargin{3};
strike = varargin{4}*pi/180; % converting STRIKE in radian
dip = varargin{5}*pi/180; % converting DIP in radian ('delta' in Okada's equations)
L = varargin{6};
W = varargin{7};
rake = varargin{8}*pi/180; % converting RAKE in radian
slip = varargin{9};
U3 = varargin{10};
switch nargin
case 11
if isnumeric(varargin{11})
nu = varargin{11};
else
makeplot = varargin{11};
end
case 12
makeplot = varargin{12};
end
if exist('makeplot','var')
if strcmp(makeplot,'plot')
plotflag = 1;
else
error('Unknown last argument.')
end
end
if plotflag & any([numel(depth),numel(strike),numel(L),numel(W),numel(rake),numel(slip),numel(U3)]>1)
warning('Cannot make plot with fault geometry parameters other than scalars.')
plotflag = 0;
end
% Defines dislocation in the fault plane system
U1 = cos(rake).*slip;
U2 = sin(rake).*slip;
% Converts fault coordinates (E,N,DEPTH) relative to centroid
% into Okada's reference system (X,Y,D)
d = depth + sin(dip).*W/2; % d is fault's top edge
ec = e + cos(strike).*cos(dip).*W/2;
nc = n - sin(strike).*cos(dip).*W/2;
x = cos(strike).*nc + sin(strike).*ec + L/2;
y = sin(strike).*nc - cos(strike).*ec + cos(dip).*W;
% Variable substitution (independent from xi and eta)
p = y.*cos(dip) + d.*sin(dip);
q = y.*sin(dip) - d.*cos(dip);
% Displacements
if any(nargout==[3, 5, 7, 9])
ux = -U1/(2*pi) .* chinnery(@ux_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@ux_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@ux_tf,x,p,L,W,q,dip,nu); ... % tensile fault
uy = -U1/(2*pi) .* chinnery(@uy_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@uy_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@uy_tf,x,p,L,W,q,dip,nu); ... % tensile fault
uz = -U1/(2*pi) .* chinnery(@uz_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@uz_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@uz_tf,x,p,L,W,q,dip,nu); ... % tensile fault
% Rotation from Okada's axes to geographic
ue = sin(strike).*ux - cos(strike).*uy;
un = cos(strike).*ux + sin(strike).*uy;
end
% Tilt
if any(nargout==[2, 5, 6, 9])
uzx = -U1/(2*pi) .* chinnery(@uzx_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@uzx_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@uzx_tf,x,p,L,W,q,dip,nu); ... % tensile fault
uzy = -U1/(2*pi) .* chinnery(@uzy_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@uzy_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@uzy_tf,x,p,L,W,q,dip,nu); ... % tensile fault
% Rotation from Okada's axes to geographic
uze = -sin(strike).*uzx + cos(strike).*uzy;
uzn = -cos(strike).*uzx - sin(strike).*uzy;
end
% Strain
if any(nargout==[4, 6, 7, 9])
uxx = -U1/(2*pi) .* chinnery(@uxx_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@uxx_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@uxx_tf,x,p,L,W,q,dip,nu); ... % tensile fault
uxy = -U1/(2*pi) .* chinnery(@uxy_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@uxy_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@uxy_tf,x,p,L,W,q,dip,nu); ... % tensile fault
uyx = -U1/(2*pi) .* chinnery(@uyx_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@uyx_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@uyx_tf,x,p,L,W,q,dip,nu); ... % tensile fault
uyy = -U1/(2*pi) .* chinnery(@uyy_ss,x,p,L,W,q,dip,nu) ... % strike-slip
- U2/(2*pi) .* chinnery(@uyy_ds,x,p,L,W,q,dip,nu) ... % dip-slip
+ U3/(2*pi) .* chinnery(@uyy_tf,x,p,L,W,q,dip,nu); ... % tensile fault
% Rotation from Okada's axes to geographic
unn = cos(strike).^2*uxx + sin(2*strike).*(uxy + uyx)/2 + sin(strike).^2.*uyy;
une = sin(2*strike).*(uxx - uyy)/2 + sin(strike).^2.*uyx - cos(strike).^2.*uxy;
uen = sin(2*strike).*(uxx - uyy)/2 - cos(strike).^2.*uyx + sin(strike).^2.*uxy;
uee = sin(strike).^2*uxx - sin(2*strike).*(uyx + uxy)/2 + cos(strike).^2.*uyy;
end
% Assigns output arguments
switch nargout
case 2
varargout = {uze, uzn};
case 3
varargout = {ue, un, uz};
case 4
varargout = {unn, une, uen, uee};
case 5
varargout = {ue, un, uz, uze, uzn};
case 6
varargout = {uze, ezn, unn, une, uen, uee};
case 7
varargout = {ue, un, uz, unn, une, uen, uee};
case 9
varargout = {ue, un, uz, uze, uzn, unn, une, uen, uee};
case 0
plotflag = 1;
otherwise
disp('Unvalid number of output arguments.')
end
% no output argument: plots geometry of the fault and dislocation
if plotflag
figure
plot(e,n,'.r','MarkerSize',.1)
alpha = pi/2 - strike;
x_fault = L/2*cos(alpha)*[-1,1,1,-1] + sin(alpha)*cos(dip)*W/2*[-1,-1,1,1];
y_fault = L/2*sin(alpha)*[-1,1,1,-1] + cos(alpha)*cos(dip)*W/2*[1,1,-1,-1];
z_fault = -d + sin(dip)*W*[1,1,0,0];
ddx = U1*cos(alpha) - U2*sin(alpha)*cos(dip) + U3*sin(alpha)*sin(dip);
ddy = U1*sin(alpha) + U2*cos(alpha)*cos(dip) - U3*cos(alpha)*sin(dip);
ddz = U2*sin(dip) + U3*cos(dip);
patch(x_fault,y_fault,z_fault,.3*[1,1,1],'EdgeColor','k','LineWidth',2)
patch(x_fault+ddx/2,y_fault+ddy/2,z_fault+ddz/2,.6*[1,1,1], ...
'EdgeColor','k','LineWidth',1,'FaceAlpha',.5)
patch(x_fault-ddx/2,y_fault-ddy/2,z_fault-ddz/2,.6*[1,1,1], ...
'EdgeColor','k','LineWidth',1,'FaceAlpha',.5)
xlabel('East'); ylabel('North'); zlabel('Vertical')
view(3); grid on; axis equal; rotate3d
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Notes for I... and K... subfunctions:
%
% 1. original formulas use Lame's parameters as mu/(mu+lambda) which
% depends only on the Poisson's ratio = 1 - 2*nu
% 2. tests for cos(dip) == 0 are made with "cos(dip) > eps"
% because cos(90*pi/180) is not zero but = 6.1232e-17 (!)
% NOTE: don't use cosd and sind because of incompatibility
% with Matlab v6 and earlier...
% =================================================================
% Chinnery's notation [equation (24) p. 1143]
% -----------------------------------------------------------------
function u=chinnery(f,x,p,L,W,q,dip,nu)
u = feval(f,x,p,q,dip,nu) ...
- feval(f,x,p-W,q,dip,nu) ...
- feval(f,x-L,p,q,dip,nu) ...
+ feval(f,x-L,p-W,q,dip,nu);
% =================================================================
% Displacement subfunctions
% strike-slip displacement subfunctions [equation (25) p. 1144]
% -----------------------------------------------------------------
function u=ux_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = xi.*q./(R.*(R + eta)) ...
+ I1(xi,eta,q,dip,nu,R).*sin(dip);
k = find(q~=0);
u(k) = u(k) + atan(xi(k).*eta(k)./(q(k).*R(k)));
% -----------------------------------------------------------------
function u=uy_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = (eta.*cos(dip) + q.*sin(dip)).*q./(R.*(R + eta)) ...
+ q.*cos(dip)./(R + eta) ...
+ I2(eta,q,dip,nu,R).*sin(dip);
% -----------------------------------------------------------------
function u=uz_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
u = (eta.*sin(dip) - q.*cos(dip)).*q./(R.*(R + eta)) ...
+ q.*sin(dip)./(R + eta) ...
+ I4(db,eta,q,dip,nu,R).*sin(dip);
% dip-slip displacement subfunctions [equation (26) p. 1144]
% -----------------------------------------------------------------
function u=ux_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = q./R ...
- I3(eta,q,dip,nu,R).*sin(dip).*cos(dip);
% -----------------------------------------------------------------
function u=uy_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = (eta.*cos(dip) + q.*sin(dip)).*q./(R.*(R + xi)) ...
- I1(xi,eta,q,dip,nu,R).*sin(dip).*cos(dip);
k = find(q~=0);
u(k) = u(k) + cos(dip).*atan(xi(k).*eta(k)./(q(k).*R(k)));
% -----------------------------------------------------------------
function u=uz_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
u = db.*q./(R.*(R + xi)) ...
- I5(xi,eta,q,dip,nu,R,db).*sin(dip).*cos(dip);
k = find(q~=0);
u(k) = u(k) + sin(dip).*atan(xi(k).*eta(k)./(q(k).*R(k)));
% tensile fault displacement subfunctions [equation (27) p. 1144]
% -----------------------------------------------------------------
function u=ux_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = q.^2 ./(R.*(R + eta)) ...
- I3(eta,q,dip,nu,R).*sin(dip).^2;
% -----------------------------------------------------------------
function u=uy_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = -(eta.*sin(dip) - q.*cos(dip)).*q./(R.*(R + xi)) ...
- sin(dip).*xi.*q./(R.*(R + eta)) ...
- I1(xi,eta,q,dip,nu,R).*sin(dip).^2;
k = find(q~=0);
u(k) = u(k) + sin(dip).*atan(xi(k).*eta(k)./(q(k).*R(k)));
% -----------------------------------------------------------------
function u=uz_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
u = (eta.*cos(dip) + q.*sin(dip)).*q./(R.*(R + xi)) ...
+ cos(dip).*xi.*q./(R.*(R + eta)) ...
- I5(xi,eta,q,dip,nu,R,db).*sin(dip).^2;
k = find(q~=0);
u(k) = u(k) - cos(dip).*atan(xi(k).*eta(k)./(q(k).*R(k)));
% I... displacement subfunctions [equations (28) (29) p. 1144-1145]
% -----------------------------------------------------------------
function I=I1(xi,eta,q,dip,nu,R)
db = eta.*sin(dip) - q.*cos(dip);
if cos(dip) > eps
I = (1 - 2*nu) * (-xi./(cos(dip).*(R + db))) ...
- sin(dip)./cos(dip).*I5(xi,eta,q,dip,nu,R,db);
else
I = -(1 - 2*nu)/2 * xi.*q./(R + db).^2;
end
% -----------------------------------------------------------------
function I=I2(eta,q,dip,nu,R)
I = (1 - 2*nu) * (-log(R + eta)) - I3(eta,q,dip,nu,R);
% -----------------------------------------------------------------
function I=I3(eta,q,dip,nu,R)
yb = eta.*cos(dip) + q.*sin(dip);
db = eta.*sin(dip) - q.*cos(dip);
if cos(dip) > eps
I = (1 - 2*nu) * (yb./(cos(dip)*(R + db)) - log(R + eta)) ...
+ sin(dip)./cos(dip) * I4(db,eta,q,dip,nu,R);
else
I = (1 - 2*nu)/2 * (eta./(R + db) + yb.*q./(R + db).^2 - log(R + eta));
end
% -----------------------------------------------------------------
function I=I4(db,eta,q,dip,nu,R)
if cos(dip) > eps
I = (1 - 2*nu) * 1./cos(dip) * (log(R + db) - sin(dip).*log(R + eta));
else
I = -(1 - 2*nu) * q./(R + db);
end
% -----------------------------------------------------------------
function I=I5(xi,eta,q,dip,nu,R,db)
X = sqrt(xi.^2 + q.^2);
if cos(dip) > eps
I = (1 - 2*nu) * 2./cos(dip) ...
.* atan((eta.*(X + q.*cos(dip)) + X.*(R + X).*sin(dip)) ...
./(xi.*(R + X).*cos(dip)));
I(xi==0) = 0;
else
I = -(1 - 2*nu) * xi.*sin(dip)./(R + db);
end
% =================================================================
% Tilt subfunctions
% strike-slip tilt subfunctions [equation (37) p. 1147]
% -----------------------------------------------------------------
function u=uzx_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = -xi.*q.^2.*A(eta,R).*cos(dip) ...
+ ((xi.*q)./R.^3 - K1(xi,eta,q,dip,nu,R)).*sin(dip);
% -----------------------------------------------------------------
function u=uzy_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
yb = eta.*cos(dip) + q.*sin(dip);
u = (db.*q./R.^3).*cos(dip) ...
+ (xi.^2.*q.*A(eta,R).*cos(dip) - sin(dip)./R + yb.*q./R.^3 ...
- K2(xi,eta,q,dip,nu,R)).*sin(dip);
% dip-slip tilt subfunctions [equation (38) p. 1147]
% -----------------------------------------------------------------
function u=uzx_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
u = db.*q./R.^3 ...
+ q.*sin(dip)./(R.*(R + eta)) ...
+ K3(xi,eta,q,dip,nu,R).*sin(dip).*cos(dip);
% -----------------------------------------------------------------
function u=uzy_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
yb = eta.*cos(dip) + q.*sin(dip);
u = yb.*db.*q.*A(xi,R) ...
- (2*db./(R.*(R + xi)) + xi.*sin(dip)./(R.*(R + eta))).*sin(dip) ...
+ K1(xi,eta,q,dip,nu,R).*sin(dip).*cos(dip);
% tensile fault tilt subfunctions [equation (39) p. 1147]
% -----------------------------------------------------------------
function u=uzx_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = q.^2./R.^3.*sin(dip) ...
- q.^3.*A(eta,R).*cos(dip) ...
+ K3(xi,eta,q,dip,nu,R).*sin(dip).^2;
% -----------------------------------------------------------------
function u=uzy_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
yb = eta.*cos(dip) + q.*sin(dip);
u = (yb.*sin(dip) + db.*cos(dip)).*q.^2.*A(xi,R) ...
+ xi.*q.^2.*A(eta,R).*sin(dip).*cos(dip) ...
- (2*q./(R.*(R + xi)) - K1(xi,eta,q,dip,nu,R)).*sin(dip).^2;
% -----------------------------------------------------------------
function a=A(x,R)
a = (2*R + x)./(R.^3.*(R + x).^2);
% K... tilt subfunctions [equations (40) (41) p. 1148]
% -----------------------------------------------------------------
function K=K1(xi,eta,q,dip,nu,R)
db = eta.*sin(dip) - q.*cos(dip);
if cos(dip) > eps
K = (1 - 2*nu) * xi./cos(dip) .* (1./(R.*(R + db)) - sin(dip)./(R.*(R + eta)));
else
K = (1 - 2*nu) * xi.*q./(R.*(R + db).^2);
end
% -----------------------------------------------------------------
function K=K2(xi,eta,q,dip,nu,R)
K = (1 - 2*nu) * (-sin(dip)./R + q.*cos(dip)./(R.*(R + eta))) ...
- K3(xi,eta,q,dip,nu,R);
% -----------------------------------------------------------------
function K=K3(xi,eta,q,dip,nu,R)
db = eta.*sin(dip) - q.*cos(dip);
yb = eta.*cos(dip) + q.*sin(dip);
if cos(dip) > eps
K = (1 - 2*nu) * 1./cos(dip) .* (q./(R.*(R + eta)) - yb./(R.*(R + db)));
else
K = (1 - 2*nu) * sin(dip)./(R + db) .* (xi.^2./(R.*(R + db)) - 1);
end
% =================================================================
% Strain subfunctions
% strike-slip strain subfunctions [equation (31) p. 1145]
% -----------------------------------------------------------------
function u=uxx_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = xi.^2.*q.*A(eta,R) ...
- J1(xi,eta,q,dip,nu,R).*sin(dip);
% -----------------------------------------------------------------
function u=uxy_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
u = xi.^3.*db./(R.^3.*(eta.^2 + q.^2)) ...
- (xi.^3.*A(eta,R) + J2(xi,eta,q,dip,nu,R)).*sin(dip);
% -----------------------------------------------------------------
function u=uyx_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = xi.*q./R.^3.*cos(dip) ...
+ (xi.*q.^2.*A(eta,R) - J2(xi,eta,q,dip,nu,R)).*sin(dip);
% -----------------------------------------------------------------
function u=uyy_ss(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
yb = eta.*cos(dip) + q.*sin(dip);
u = yb.*q./R.^3.*cos(dip) ...
+ (q.^3.*A(eta,R).*sin(dip) - 2*q.*sin(dip)./(R.*(R + eta)) ...
- (xi.^2 + eta.^2)./R.^3.*cos(dip) - J4(xi,eta,q,dip,nu,R)).*sin(dip);
% dip-slip strain subfunctions [equation (32) p. 1146]
% -----------------------------------------------------------------
function u=uxx_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = xi.*q./R.^3 ...
+ J3(xi,eta,q,dip,nu,R).*sin(dip).*cos(dip);
% -----------------------------------------------------------------
function u=uxy_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
yb = eta.*cos(dip) + q.*sin(dip);
u = yb.*q./R.^3 ...
- sin(dip)./R ...
+ J1(xi,eta,q,dip,nu,R).*sin(dip).*cos(dip);
% -----------------------------------------------------------------
function u=uyx_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
yb = eta.*cos(dip) + q.*sin(dip);
u = yb.*q./R.^3 ...
+ q.*cos(dip)./(R.*(R + eta)) ...
+ J1(xi,eta,q,dip,nu,R).*sin(dip).*cos(dip);
% -----------------------------------------------------------------
function u=uyy_ds(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
yb = eta.*cos(dip) + q.*sin(dip);
u = yb.^2.*q.*A(xi,R) ...
- (2*yb./(R.*(R + xi)) + xi.*cos(dip)./(R.*(R + eta))).*sin(dip) ...
+ J2(xi,eta,q,dip,nu,R).*sin(dip).*cos(dip);
% tensile fault strain subfunctions [equation (33) p. 1146]
% -----------------------------------------------------------------
function u=uxx_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = xi.*q.^2.*A(eta,R) ...
+ J3(xi,eta,q,dip,nu,R).*sin(dip).^2;
% -----------------------------------------------------------------
function u=uxy_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
u = -db.*q./R.^3 ...
- xi.^2.*q.*A(eta,R).*sin(dip) ...
+ J1(xi,eta,q,dip,nu,R).*sin(dip).^2;
% -----------------------------------------------------------------
function u=uyx_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
u = q.^2./R.^3.*cos(dip) ...
+ q.^3.*A(eta,R).*sin(dip) ...
+ J1(xi,eta,q,dip,nu,R).*sin(dip).^2;
% -----------------------------------------------------------------
function u=uyy_tf(xi,eta,q,dip,nu)
R = sqrt(xi.^2 + eta.^2 + q.^2);
db = eta.*sin(dip) - q.*cos(dip);
yb = eta.*cos(dip) + q.*sin(dip);
u = (yb.*cos(dip) - db.*sin(dip)).*q.^2.*A(xi,R) ...
- q.*sin(2*dip)./(R.*(R + xi)) ...
- (xi.*q.^2.*A(eta,R) - J2(xi,eta,q,dip,nu,R)).*sin(dip).^2;
% J... tensile fault subfunctions [equations (34) (35) p. 1146-1147]
% -----------------------------------------------------------------
function J=J1(xi,eta,q,dip,nu,R)
db = eta.*sin(dip) - q.*cos(dip);
if cos(dip) > eps
J = (1 - 2*nu) * 1./cos(dip) * (xi.^2./(R.*(R + db).^2) - 1./(R + db)) ...
- sin(dip)./cos(dip)*K3(xi,eta,q,dip,nu,R);
else
J = (1 - 2*nu)/2 * q./(R + db).^2 .* (2*xi.^2./(R.*(R + db)) - 1);
end
% -----------------------------------------------------------------
function J=J2(xi,eta,q,dip,nu,R)
db = eta.*sin(dip) - q.*cos(dip);
yb = eta.*cos(dip) + q.*sin(dip);
if cos(dip) > eps
J = (1 - 2*nu) * 1./cos(dip) * xi.*yb./(R.*(R + db).^2) ...
- sin(dip)./cos(dip)*K1(xi,eta,q,dip,nu,R);
else
J = (1 - 2*nu)/2 * xi.*sin(dip)./(R + db).^2 .* (2*q.^2./(R.*(R + db)) - 1);
end
% -----------------------------------------------------------------
function J=J3(xi,eta,q,dip,nu,R)
J = (1 - 2*nu) * -xi./(R.*(R + eta)) ...
- J2(xi,eta,q,dip,nu,R);
% -----------------------------------------------------------------
function J=J4(xi,eta,q,dip,nu,R)
J = (1 - 2*nu) * (-cos(dip)./R - q.*sin(dip)./(R.*(R + eta))) ...
- J1(xi,eta,q,dip,nu,R);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类文章来源:https://www.toymoban.com/news/detail-857555.html
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类文章来源地址https://www.toymoban.com/news/detail-857555.html
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
到了这里,关于基于卡尔曼滤波检测GNSS 数据中的智能手机位移附matlab代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!