ClickHouse10-ClickHouse中Kafka表引擎

这篇具有很好参考价值的文章主要介绍了ClickHouse10-ClickHouse中Kafka表引擎。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Kafka表引擎也是一种常见的表引擎,在很多大数据量的场景下,会从源通过Kafka将数据输送到ClickHouse,Kafka作为输送的方式,ClickHouse作为存储引擎与查询引擎,大数据量的数据可以得到快速的、高压缩的存储。
clickhouse kafka引擎表,ClickHouse,消息队列,clickhouse,kafka,数据库

Kafka大家肯定不陌生:

  • 它可以用于发布和订阅数据流,是常见的队列使用方式
  • 它可以组织容错存储,是常见的容错存储的使用方式
  • 它可以在流可用时对其进行处理,是常见的大数据处理的使用方式

全文概览:

  • 基本语法
  • 从 Kafka 写入到 ClickHouse
  • 从 ClickHouse 写入到 Kafka
    • 测试1:queue->ck->queue
    • 测试2:ck->queue

基本语法

分为定义表结构和定义Kafka的接入参数,Kafka的接入参数都是常见的字段

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [ALIAS expr1],
    name2 [type2] [ALIAS expr2],
    ...
) ENGINE = Kafka()
SETTINGS
    kafka_broker_list = 'host:port',
    kafka_topic_list = 'topic1,topic2,...',
    kafka_group_name = 'group_name',
    kafka_format = 'data_format'[,]
    [kafka_schema = '',]
    [kafka_num_consumers = N,]
    [kafka_max_block_size = 0,]
    [kafka_skip_broken_messages = N,]
    [kafka_commit_every_batch = 0,]
    [kafka_client_id = '',]
    [kafka_poll_timeout_ms = 0,]
    [kafka_poll_max_batch_size = 0,]
    [kafka_flush_interval_ms = 0,]
    [kafka_thread_per_consumer = 0,]
    [kafka_handle_error_mode = 'default',]
    [kafka_commit_on_select = false,]
    [kafka_max_rows_per_message = 1];

示例:

CREATE TABLE IF NOT EXISTS test_ck_sync1
(
    `sys_time` Datetime COMMENT '',
    `num` UInt32 COMMENT ''
)
ENGINE = Kafka
SETTINGS kafka_broker_list = '127.0.0.1:9092', kafka_topic_list = 'test_ck_sync1', kafka_group_name = 'ck_test_ck_sync1', kafka_format = 'CSV', kafka_max_block_size = 200000, kafka_skip_broken_messages = 1000, kafka_row_delimiter = '\n', format_csv_delimiter = '|'

从 Kafka 写入到 ClickHouse

创建topic:

bin/kafka-topics.sh --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 1 --topic test_ck_sync1

创建同步表:

CREATE TABLE IF NOT EXISTS test_ck_sync1
(
    `sys_time` Datetime COMMENT '',
    `num` UInt32 COMMENT ''
)
ENGINE = Kafka
SETTINGS kafka_broker_list = '127.0.0.1:9092', kafka_topic_list = 'test_ck_sync1', kafka_group_name = 'ck_test_ck_sync1', kafka_format = 'CSV', kafka_max_block_size = 200000, kafka_skip_broken_messages = 1000, kafka_row_delimiter = '\n', format_csv_delimiter = '|'

CREATE TABLE IF NOT EXISTS test_ck_sync1_res
(
    `sys_time` Datetime COMMENT '',
    `num` UInt32 COMMENT ''
)
ENGINE = MergeTree
PARTITION BY toYYYYMMDD(sys_time)
ORDER BY tuple()

创建物化视图,进行数据样式的转换:

CREATE MATERIALIZED VIEW test_ck_sync1_mv TO test_ck_sync1_res AS
SELECT
    sys_time,
    num
FROM test_ck_sync1

通过console写入数据:

[$ kafka_2.13-3.6.1]# bin/kafka-console-producer.sh --broker-list 127.0.0.1:9092 --topic test_ck_sync1
>2024-01-01 00:00:01|89  

验证数据:

$ :) select * from test_ck_sync1_res;

SELECT *
FROM test_ck_sync1_res

Query id: a666f893-5be9-4022-9327-3a1507aa5485

┌────────────sys_time─┬─num─┐
│ 2024-01-01 00:00:01 │  89 │
└─────────────────────┴─────┘
┌────────────sys_time─┬─num─┐
│ 2024-01-01 00:00:00 │  88 │
└─────────────────────┴─────┘

2 rows in set. Elapsed: 0.049 sec.

从 ClickHouse 写入到 Kafka

kafka_writers_reader --(view)--> kafka_writers_queue ---> 

创建一个队列:

bin/kafka-topics.sh --topic kafka_writers --create -bootstrap-server 127.0.0.1:9092 --partitions 1 --replication-factor 1

创建同步表:

CREATE TABLE kafka_writers_reader (     `id` Int,     `platForm` String,     `appname` String,     `time` DateTime ) 
ENGINE = Kafka SETTINGS kafka_broker_list = '127.0.0.1:9092', kafka_topic_list = 'kafka_writers_reader', kafka_group_name = 'kafka_writers_reader_group', kafka_format = 'CSV';

CREATE TABLE kafka_writers_queue (     id Int,     platForm String,     appname String,     time DateTime ) 
ENGINE = Kafka SETTINGS kafka_broker_list = '127.0.0.1:9092',        kafka_topic_list = 'kafka_writers',        kafka_group_name = 'kafka_writers_group',        kafka_format = 'CSV',       kafka_max_block_size = 1048576;

测试1:queue->ck->queue

通过写入队列kafka_writers_reader,借助ClickHouse写入队列kafka_writers

bin/kafka-topics.sh --topic kafka_writers_reader --create -bootstrap-server 127.0.0.1:9092 --partitions 1 --replication-factor 1

bin/kafka-console-producer.sh --broker-list 127.0.0.1:9092 --topic kafka_writers_reader

bin/kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic kafka_writers

测试2:ck->queue

通过写入表kafka_writers_reader,写入队列kafka_writers

$ :) INSERT INTO kafka_writers_reader (id, platForm, appname, time) 
VALUES (8,'Data','Test','2020-12-23 14:45:31'), 
(9,'Plan','Test1','2020-12-23 14:47:32'), 
(10,'Plan','Test2','2020-12-23 14:52:15'), 
(11,'Data','Test3','2020-12-23 14:54:39');

INSERT INTO kafka_writers_reader (id, platForm, appname, time) FORMAT Values

Query id: 223a63ab-97fa-488d-8ea7-c2e194155d26

Ok.

4 rows in set. Elapsed: 1.054 sec. 

[$ kafka_2.13-3.6.1]# bin/kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic kafka_writers
8,"Data","Test","1970-01-01 08:00:00"

9,"Plan","Test1","1970-01-01 08:00:00"

10,"Plan","Test2","1970-01-01 08:00:00"

11,"Data","Test3","1970-01-01 08:00:00"

如果喜欢我的文章的话,可以去GitHub上给一个免费的关注吗?文章来源地址https://www.toymoban.com/news/detail-857608.html

到了这里,关于ClickHouse10-ClickHouse中Kafka表引擎的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Flink-Kafka-To-ClickHouse】使用 Flink 实现 Kafka 数据写入 ClickHouse

    需求描述: 1、数据从 Kafka 写入 ClickHouse。 2、相关配置存放于 Mysql 中,通过 Mysql 进行动态读取。 3、此案例中的 Kafka 是进行了 Kerberos 安全认证的,如果不需要自行修改。 4、先在 ClickHouse 中创建表然后动态获取 ClickHouse 的表结构。 5、Kafka 数据为 Json 格式,通过 FlatMap 扁平

    2024年02月03日
    浏览(47)
  • ClickHouse与Kafka的整合

    ClickHouse 是一个高性能的列式数据库,主要用于日志分析和实时数据处理。Kafka 是一个分布式流处理平台,用于构建实时数据流管道和流处理应用程序。在现代数据处理系统中,ClickHouse 和 Kafka 是常见的组件,它们之间的整合可以实现更高效的数据处理和分析。 本文将涵盖

    2024年02月21日
    浏览(34)
  • 大数据ClickHouse(五):数据库引擎介绍与实例演示

    文章目录 数据库引擎介绍与实例演示 一、Ordinary默认数据库引擎 二、MySQL数据库引擎

    2024年02月03日
    浏览(52)
  • 探索ClickHouse——使用MaterializedView存储kafka传递的数据

    在 《探索ClickHouse——连接Kafka和Clickhouse》中,我们讲解了如何使用kafka engin连接kafka,并读取topic中的数据。但是遇到了一个问题,就是数据只能读取一次,即使后面还有新数据发送到该topic,该表也读不出来。 为了解决这个问题,我们引入MaterializedView。 该表结构直接借用了

    2024年02月07日
    浏览(46)
  • ClickHouse--04--数据库引擎、Log 系列表引擎、 Special 系列表引擎

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 ClickHouse 中支持在创建数据库时指定引擎,目前比较常用的两种引擎为默认引擎 和 MySQL 数据库引擎。 Ordinary 就是 ClickHouse 中默认引擎,如果不指定数据库引擎创建的就是Ordinary 数据库引擎,在这种数据

    2024年02月20日
    浏览(57)
  • nginx+rsyslog+kafka+clickhouse+grafana 实现nginx 网关监控

    我想做一个类似腾讯云网关日志最终以仪表方式呈现,比如说qps、p99、p95的请求响应时间等等 数据流转就像标题 nginx ---- rsyslog ---- kafka — clickhouse — grafana kafka 相关部署这里不做赘述,只要创建一个topic 就可以 这里 kafka 地址是 192.168.1.180 ,topic是`` rsyslog 具体是啥东西这个我

    2024年02月03日
    浏览(45)
  • ClickHouse 与 Kafka 整合: 实时数据流处理与分析解决方案

    随着数据量的不断增长,实时数据处理和分析变得越来越重要。ClickHouse 和 Kafka 都是在现代数据技术中发挥着重要作用的工具。ClickHouse 是一个高性能的列式数据库,专为 OLAP 和实时数据分析而设计。Kafka 是一个分布式流处理平台,用于构建实时数据流管道和流处理应用程序

    2024年02月22日
    浏览(51)
  • 【flink番外篇】3、flink的source(内置、mysql、kafka、redis、clickhouse)介绍及示例(3)- kafka

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月03日
    浏览(55)
  • MySQL FlinkCDC 通过Kafka实时同步到ClickHouse(自定义Debezium格式支持增加删除修改)

    MySQL FlinkCDC 通过Kafka实时同步到ClickHouse(自定义Debezium格式支持增加删除修改) 把MySQL多库多表的数据通过FlinkCDC DataStream的方式实时同步到同一个Kafka的Topic中,然后下游再写Flink SQL拆分把数据写入到ClickHouse,FlinkCDC DataStream通过自定义Debezium格式的序列化器,除了增加,还能进行

    2024年02月15日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包