【深度学习】【机器学习】用神经网络进行入侵检测,NSL-KDD数据集,基于机器学习(深度学习)判断网络入侵,网络攻击,流量异常

这篇具有很好参考价值的文章主要介绍了【深度学习】【机器学习】用神经网络进行入侵检测,NSL-KDD数据集,基于机器学习(深度学习)判断网络入侵,网络攻击,流量异常。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【深度学习】用神经网络进行入侵检测,NSL-KDD数据集,用网络连接特征判断是否是网络入侵。

下载数据集NSL-KDD

NSL-KDD数据集,有dos,u2r,r21,probe等类型的攻击,和普通的正常的流量,即是有五个类别:

1、Normal:正常记录
2、DOS:拒绝服务攻击
3、PROBE:监视和其他探测活动
4、R2L:来自远程机器的非法访问
5、U2R:普通用户对本地超级用户特权的非法访问

数据集样子如下,一行就是一个样本。一个样本有41个特征和一个类别标签。

nsl kdd数据集,深度学习机器学习,深度学习,机器学习,神经网络

数据集介绍

https://towardsdatascience.com/a-deeper-dive-into-the-nsl-kdd-data-set-15c753364657

https://mathpretty.com/10244.html

输入的41个特征介绍

下面是对网络连接的41个特征的介绍:

特征编号 特征名称 特征描述 类型 范围
1 duration 连接持续时间,从TCP连接建立到结束的时间,或每个UDP数据包的连接时间 连续 [0, 58329]秒
2 protocol_type 协议类型,可能值为TCP, UDP, ICMP 离散 -
3 service 目标主机的网络服务类型,共70种可能值 离散 -
4 flag 连接状态,11种可能值,表示连接是否按照协议要求开始或完成 离散 -
5 src_bytes 从源主机到目标主机的数据的字节数 连续 [0, 1379963888]
6 dst_bytes 从目标主机到源主机的数据的字节数 连续 [0, 1309937401]
7 land 若连接来自/送达同一个主机/端口则为1,否则为0 离散 0或1
8 wrong_fragment 错误分段的数量 连续 [0, 3]
9 urgent 加急包的个数 连续 [0, 14]
10 hot 访问系统敏感文件和目录的次数 连续 [0, 101]
11 num_failed_logins 登录尝试失败的次数 连续 [0, 5]
12 logged_in 成功登录则为1,否则为0 离散 0或1
13 num_compromised compromised条件出现的次数 连续 [0, 7479]
14 root_shell 若获得root shell 则为1,否则为0 离散 0或1
15 su_attempted 若出现"su root" 命令则为1,否则为0 离散 0或1
16 num_root root用户访问次数 连续 [0, 7468]
17 num_file_creations 文件创建操作的次数 连续 [0, 100]
18 num_shells 使用shell命令的次数 连续 [0, 5]
19 num_access_files 访问控制文件的次数 连续 [0, 9]
20 num_outbound_cmds 一个FTP会话中出站连接的次数 连续 0
21 is_hot_login 登录是否属于“hot”列表,是为1,否则为0 离散 0或1
22 is_guest_login 若是guest登录则为1,否则为0 离散 0或1
23 count 过去两秒内,与当前连接具有相同的目标主机的连接数 连续 [0, 511]
24 srv_count 过去两秒内,与当前连接具有相同服务的连接数 连续 [0, 511]
25 serror_rate 过去两秒内,在与当前连接具有相同目标主机的连接中,出现“SYN”错误的连接的百分比 连续 [0.00, 1.00]
26 srv_serror_rate 过去两秒内,在与当前连接具有相同服务的连接中,出现“SYN”错误的连接的百分比 连续 [0.00, 1.00]
27 rerror_rate 过去两秒内,在与当前连接具有相同目标主机的连接中,出现“REJ”错误的连接的百分比 连续 [0.00, 1.00]
28 srv_rerror_rate 过去两秒内,在与当前连接具有相同服务的连接中,出现“REJ”错误的连接的百分比 连续 [0.00, 1.00]
29 same_srv_rate 过去两秒内,在与当前连接具有相同目标主机的连接中,与当前连接具有相同服务的连接的百分比 连续 [0.00, 1.00]
30 diff_srv_rate 过去两秒内,在与当前连接具有相同目标主机的连接中,与当前连接具有不同服务的连接的百分比 连续 [0.00, 1.00]
31 srv_diff_host_rate 过去两秒内,在与当前连接具有相同服务的连接中,与当前连接具有不同目标主机的连接的百分比 连续 [0.00, 1.00]
32 dst_host_count 前100个连接中,与当前连接具有相同目标主机的连接数 连续 [0, 255]
33 dst_host_srv_count 前100个连接中,与当前连接具有相同目标主机相同服务的连接数 连续 [0, 255]
34 dst_host_same_srv_rate 前100个连接中,与当前连接具有相同目标主机相同服务的连接所占的百分比 连续 [0.00, 1.00]
35 dst_host_diff_srv_rate 前100个连接中,与当前连接具有相同目标主机不同服务的连接所占的百分比 连续 [0.00, 1.00]
36 dst_host_same_src_port_rate 前100个连接中,与当前连接具有相同目标主机相同源端口的连接所占的百分比 连续 [0.00, 1.00]
37 dst_host_srv_diff_host_rate 前100个连接中,与当前连接具有相同目标主机相同服务的连接中,与当前连接具有不同源主机的连接所占的百分比 连续 [0.00, 1.00]
38 dst_host_serror_rate 前100个连接中,与当前连接具有相同目标主机的连接中,出现SYN错误的连接所占的百分比 连续 [0.00, 1.00]
39 dst_host_srv_serror_rate 前100个连接中,与当前连接具有相同目标主机相同服务的连接中,出现SYN错误的连接所占的百分比 连续 [0.00, 1.00]
40 dst_host_rerror_rate 前100个连接中,与当前连接具有相同目标主机的连接中,出现REJ错误的连接所占的百分比 连续 [0.00, 1.00]
41 dst_host_srv_rerror_rate 前100个连接中,与当前连接具有相同目标主机相同服务的连接中,出现REJ错误的连接所占的百分比 连续 [0.00, 1.00]

这个表格提供了关于网络连接的41个特征的详细介绍,包括特征编号、特征名称、特征描述、类型以及范围。

输出的五个类别

数据集是一个csv表格,倒数第二列就是类别标签,类别是五个,但是csv表格里分得很细。

['normal', 'dos', 'probe', 'r2l', 'u2r']

但csv里写的详细的标签如下图,比如Dos攻击往细了分,还有back、neptune之类的,但我们只关心五个大类别。
nsl kdd数据集,深度学习机器学习,深度学习,机器学习,神经网络

可以通过这个程序转换,比如[‘back’, ‘land’, ‘neptune’, ‘pod’, ‘smurf’, ‘teardrop’, ‘processtable’, ‘udpstorm’, ‘mailbomb’, ‘apache2’]都是Dos攻击类别。

# 结果标签转换为数字
dos_type = ['back', 'land', 'neptune', 'pod', 'smurf', 'teardrop', 'processtable', 'udpstorm', 'mailbomb',
            'apache2']
probing_type = ['ipsweep', 'mscan', 'nmap', 'portsweep', 'saint', 'satan']
r2l_type = ['ftp_write', 'guess_passwd', 'imap', 'multihop', 'phf', 'warezmaster', 'warezclient', 'spy', 'sendmail',
            'xlock', 'snmpguess', 'named', 'xsnoop', 'snmpgetattack', 'worm']
u2r_type = ['buffer_overflow', 'loadmodule', 'perl', 'rootkit', 'xterm', 'ps', 'httptunnel', 'sqlattack']
type2id = {'normal': 0}
for i in dos_type:
    type2id[i] = 1
for i in r2l_type:
    type2id[i] = 2
for i in u2r_type:
    type2id[i] = 3
for i in probing_type:
    type2id[i] = 4

数据处理&&训练技巧

数据预处理

讨论原始网络数据面临的挑战:高维度、类别特征和连续特征。

使用的技术:

对类别数据(协议类型、服务和标志)进行独热编码。

标准化连续特征以处理不同的尺度。

如何处理缺失数据(如果有),通过插值或删除。

使用StandardScaler和pickle保存缩放参数以保持一致的预处理。

处理不平衡数据

讨论入侵检测数据集中的不平衡问题。

介绍ImbalancedDatasetSampler的使用及其如何帮助实现平衡的小批量。

使用此类采样器对深度学习模型训练的好处。

模型架构

权重初始化技术,如Xavier和Kaiming初始化。

使用Dropout和Batch Normalization防止过拟合。

训练技巧

使用CosineAnnealingLR进行学习率调度,以适应性地调整学习率。

选择Adam优化器而非传统的SGD的原因。

损失函数的选择及其对模型训练的影响。

实验设置

数据加载器和批处理过程的描述。

利用GPU进行高效模型训练。

在训练过程中评估模型准确性和损失的过程。

建神经网络,输入41个特征,输出是那种类别的攻击

神经网络模型1,这是个全连接神经网络,训练完后效果不错:


class FullyConnectedNet(nn.Module):
    def __init__(self, input_size=122, num_classes=5):
        super(FullyConnectedNet, self).__init__()
        self.fc1 = nn.Linear(input_size, 512)  # 第一层全连接层
        self.fc2 = nn.Linear(512, 1024)  # 第二层全连接层
        self.fc3 = nn.Linear(1024, 512)  # 第三层全连接层
        self.fc3_1 = nn.Linear(512, 128)  # 第三层全连接层
        # self.fc3_2 = nn.Linear(512, 128)  # 第三层全连接层
        self.fc4 = nn.Linear(128, num_classes)  # 输出层

        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.2)

    def forward(self, x):
        x = self.relu(self.fc1(x))
        # x = self.dropout(x)
        x = self.relu(self.fc2(x))
        # x = self.dropout(x)
        x = self.relu(self.fc3(x))
        # x = self.dropout(x)
        x = self.relu(self.fc3_1(x))
        # x = self.dropout(x)
        # x = self.relu(self.fc3_2(x))
        x = self.fc4(x)
        return x

    # 初始化权重
    def init_weights(self):
        for m in self.modules():
            if type(m) == nn.Linear:
                init.xavier_normal_(m.weight)
                init.constant_(m.bias, 0)

为了写论文,当然可以造一些别的网络,效果也差不多,看你想怎么写就怎么写,比如下面这个模型:


class BGRUNet2(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(BGRUNet2, self).__init__()
        self.hidden_size = hidden_size
        self.gru = nn.GRU(input_size, hidden_size, batch_first=True, bidirectional=True)
        self.fc1 = nn.Linear(hidden_size * 2, 512)  # Multiply hidden size by 2 for bidirectional
        self.fc2 = nn.Linear(512, 64)
        self.fc3 = nn.Linear(64, output_size)
        self.dropout = nn.Dropout(0.2)

        # Initialize GRU weights
        for name, param in self.gru.named_parameters():
            if 'weight_ih' in name:
                init.xavier_uniform_(param.data)
            elif 'weight_hh' in name:
                init.orthogonal_(param.data)
            elif 'bias' in name:
                param.data.fill_(0)

        # Initialize fully connected layer weights
        init.xavier_uniform_(self.fc1.weight)
        init.xavier_uniform_(self.fc2.weight)
        init.xavier_uniform_(self.fc3.weight)

        # Initialize fully connected layer biases
        init.zeros_(self.fc1.bias)
        init.zeros_(self.fc2.bias)
        init.zeros_(self.fc3.bias)

    def forward(self, x):
        # Initialize hidden state for bidirectional GRU
        h0 = torch.zeros(2, x.size(0), self.hidden_size).to(x.device)  # 2 for bidirectional

        # Forward pass through GRU
        out, _ = self.gru(x, h0)

        # Concatenate the hidden states from both directions
        out = torch.cat((out[:, -1, :self.hidden_size], out[:, 0, self.hidden_size:]), dim=1)

        out = self.dropout(out)
        out = F.relu(self.fc1(out))
        out = self.dropout(out)
        out = F.relu(self.fc2(out))
        out = self.dropout(out)
        return self.fc3(out)

模型训练

训练30轮,准确度最高97.39%:

nsl kdd数据集,深度学习机器学习,深度学习,机器学习,神经网络

随着训练轮数的变化,损失的变化:

nsl kdd数据集,深度学习机器学习,深度学习,机器学习,神经网络

模型推理

加载模型后,构建输入数据,模型推导得出结果:

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BGRUNet2(input_size=122, hidden_size=256, output_size=5)
model.load_state_dict(torch.load('model_accuracy_max.pth', map_location=device))
model.to(device)
model.eval()
time1 = time.time()
with torch.no_grad():
    X = X.to(device)
    outputs = model(X)
    # softmax
    outputs = F.softmax(outputs, dim=1)
    _, predicted = torch.max(outputs.data, 1)
    time2 = time.time()

写gradio前端界面,用户自己输入41个特征,后端用模型推理计算后显示出是否是dos攻击

安装环境(仅仅第一次需要安装):

pip install matplotlib torch torchvision gradio pandas scipy torchsampler scikit-learn==1.3.1

运行代码 python app.py 后访问:http://127.0.0.1:7861/

可以看到:
nsl kdd数据集,深度学习机器学习,深度学习,机器学习,神经网络

填写特征太多,有点懒得填,可以拉到最底下,有例子,可以点一下例子数据:

nsl kdd数据集,深度学习机器学习,深度学习,机器学习,神经网络

然后点一下提交,模型推理后给出结果,可以看到,模型认为这次连接数据表明了这是Doc入侵攻击,概率是1,模型推理消耗了0.01毫秒。

nsl kdd数据集,深度学习机器学习,深度学习,机器学习,神经网络

使用方法:

nsl kdd数据集,深度学习机器学习,深度学习,机器学习,神经网络

执行python train.py。即可开启训练。

执行python app.py。即可开启gradio前端界面。

获取代码和模型

go:文章来源地址https://www.toymoban.com/news/detail-857633.html

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

到了这里,关于【深度学习】【机器学习】用神经网络进行入侵检测,NSL-KDD数据集,基于机器学习(深度学习)判断网络入侵,网络攻击,流量异常的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习&&深度学习——循环神经网络RNN

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习—语言模型和数据集 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 在之前介绍了n元语法模型,其中单词xt在时间步t的概率仅取决于前n-1个单词。对于时间步t-(n-1)之前

    2024年02月13日
    浏览(42)
  • 深度学习2.神经网络、机器学习、人工智能

    目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、机器学习、人工智能

    2024年02月11日
    浏览(50)
  • 深度学习、机器学习和神经网络之间的区别

    深度学习是机器学习的一个子类别,有效地是一个三层神经网络。这些神经网络旨在通过模仿人脑的功能来“学习”大量数据,但它们远远达不到人脑的能力。尽管单层神经网络只能做出近似处理,但增加隐藏层可以帮助优化和提高准确性。 深度学习用于人工智能(AI)应用

    2024年02月20日
    浏览(31)
  • 机器学习算法汇总:人工神经网络、深度学习及其它

    根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来

    2024年01月17日
    浏览(43)
  • 机器学习六—深度学习算法之人工神经网络(ANN)

    人工神经网络的灵感来自其生物学对应物。生物神经网络使大脑能够以复杂的方式处理大量信息。大脑的生物神经网络由大约1000亿个神经元组成,这是大脑的基本处理单元。神经元通过彼此之间巨大的连接(称为突触)来执行其功能。 人体神经元模型,下如图: 接收区 (

    2024年01月25日
    浏览(38)
  • 【AI】了解人工智能、机器学习、神经网络、深度学习

    一、深度学习、神经网络的原理是什么? 深度学习和神经网络都是基于对人脑神经系统的模拟。下面将分别解释深度学习和神经网络的原理。 深度学习的原理: 深度学习是一种特殊的机器学习,其模型结构更为复杂,通常包括很多隐藏层。它依赖于神经网络进行模型训练和

    2024年02月06日
    浏览(55)
  • 竞赛项目 深度学习的口罩佩戴检测 - opencv 卷积神经网络 机器视觉 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的口罩佩戴检测【全网最详细】 - opencv 卷积神经网络 机器视觉 深度学习 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 从2019年末开始,新型冠状

    2024年02月13日
    浏览(42)
  • 机器学习31:《推荐系统-IV》深度神经网络DNN

    在《 推荐系统(二)协同过滤 》一文中,笔者介绍了如何使用矩阵分解来学习嵌入。矩阵分解具有一些局限性: 基础矩阵分解只用了 UserID(QueryID) 和 ItemID 两个维度的信息,所有学到的知识都蕴含在 User 向量和 Item 嵌入中。可解释性差,同时,学习过程中很难融合更多有

    2024年02月16日
    浏览(36)
  • 【毕业设计】深度学习花卉识别系统 - 卷积神经网络 机器视觉

    🔥 Hi,大家好,这里是丹成学长的毕设系列文章! 🔥 对毕设有任何疑问都可以问学长哦! 这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定

    2024年02月05日
    浏览(54)
  • 竞赛选题 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享:

    2024年02月08日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包