椋鸟数据结构笔记#10:排序·中

这篇具有很好参考价值的文章主要介绍了椋鸟数据结构笔记#10:排序·中。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


萌新的学习笔记,写错了恳请斧正。

四、归并排序

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

归并排序是一种非常高效的排序算法。基本思想是将一个大数组分成两半,分别对这两半进行排序,然后将排序好的两部分合并在一起。这个过程递归进行,每次将数组分半,直到每个部分只有一个元素,自然是有序的,最终得到一个完整的有序数组。

归并排序的步骤如下:

  1. 分割:把当前序列平均分割成两半。
  2. 递归排序:递归地对这两半进行归并排序,直到分割的子序列只包含一个元素。
  3. 合并:将两个有序的子序列合并成一个有序序列。
时间复杂度

归并排序的时间复杂度为 O ( N log ⁡   N ) O(N\log\,N) O(NlogN)​,在最好最坏情况都是如此。是一种效率稳定的排序方法。

实现
递归实现
void _MergeSort(int* arr, int left, int right, int* tmp)
{
	if (left >= right)
	{
		return;
	}

	int mid = (left + right) / 2;
	//[left, mid] [mid + 1, right]
	
	_MergeSort(arr, left, mid, tmp);
	_MergeSort(arr, mid + 1, right, tmp);

	//合并
	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;
	int index = left;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (arr[begin1] < arr[begin2])
		{
			tmp[index++] = arr[begin1++];
		}
		else
		{
			tmp[index++] = arr[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[index++] = arr[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[index++] = arr[begin2++];
	}
	memcpy(arr + left, tmp + left, sizeof(int) * (right - left + 1));
}

void MergeSort(int* arr, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc");
		return;
	}

	_MergeSort(arr, 0, n - 1, tmp);

	free(tmp);
	tmp = NULL;
}
非递归实现

同样的,归并排序的递归也可以整合为非递归的形式:

void MergeSortNonR(int* arr, int n)
{
	int* tmp = (int*)malloc(n * sizeof(int));
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	for (int gap = 1; gap < n; gap *= 2)
	{
		for (int j = 0; j < n; j += 2 * gap)
		{
			int begin1 = j, end1 = begin1 + gap - 1;
			int begin2 = begin1 + gap, end2 = begin2 + gap - 1;
			if (end1 >= n || begin2 >= n)
			{
				break;
			}
			if (end2 >= n)
			{
				end2 = n - 1;
			}
			int i = j;
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (arr[begin1] < arr[begin2])
				{
					tmp[i++] = arr[begin1++];
				}
				else
				{
					tmp[i++] = arr[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[i++] = arr[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[i++] = arr[begin2++];
			}
			memcpy(arr + j, tmp + j, sizeof(int) * (end2 - j + 1));	//用j不用begin1,begin1已经改变
		}
	}
	free(tmp);
	tmp = NULL;
}
测试

下面是对一千万个随机数据的排序测试

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

稳定性

归并排序是稳定的。

五、非比较排序

非比较排序不通过直接比较元素之间的大小关系来排序,而是利用其他方法,如数字或者字符串的特性。

非比较排序往往能达到非常非常高的时间效率,但是也往往受到非常大的使用限制

5.1 计数排序

计数排序使用一个额外的数组来记录每个值的出现次数,然后根据这些计数来组织输出排序结果。

计数排序的步骤:

  1. 找出待排序数组中的最大值和最小值,确定计数数组的长度。
  2. 创建并初始化计数数组,索引代表原数组中的元素,值代表该元素出现的次数。
  3. 遍历原数组,更新计数数组:对于原数组中的每一个元素,将计数数组对应索引的值增加1。
  4. 根据计数数组,重构原数组:遍历计数数组,根据每个索引的计数,在原数组中按顺序填充相应的元素。
时间复杂度

计数排序的时间复杂度是 O ( N + K ) O(N+K) O(N+K),其中K是数组中数据跨度的范围大小(比方说一个数组中所有数据都是1,那这个跨度就是1,如果里面有一个1变成了100万,那K就直接变成了100万)。

所以说,如果数据跨度比较小,计数排序的时间复杂度就可以认为是 O ( N ) O(N) O(N),其效率非常离谱。

实现
void CountSort(int* arr, int n)
{
	int max = arr[0];
	int min = arr[0];
	for (int i = 1; i < n; ++i)
	{
		if (arr[i] > max)
		{
			max = arr[i];
		}
		if (arr[i] < min)
		{
			min = arr[i];
		}
	}
	int range = max - min + 1;
	int* count = (int*)malloc(sizeof(int) * range);
	if (count == NULL)
	{
		perror("malloc");
		return;
	}
	memset(count, 0, sizeof(int) * range);
	for (int i = 0; i < n; ++i)
	{
		count[arr[i] - min]++;
	}
	int index = 0;
	for (int i = 0; i < range; ++i)
	{
		while (count[i]--)
		{
			arr[index++] = i + min;
		}
	}
	free(count);
	count = NULL;
}
测试

下面是对一千万个随机数据的排序测试(数据在0到32767):

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

下面是对一千万个随机数据的排序测试(数据在0到十亿):

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

局限性

就像上面所说,计数排序只有在数据跨度较小时能够获得极高的时间效率。而且计数排序只能用于排序整型数据。另外,其空间复杂度较高。

5.2 桶排序

注意:桶排序效率高的离谱,局限性也高的离谱,如果还是随便生成大量数据测试可能导致程序崩溃甚至电脑卡死!

桶排序是基于基数排序和分布的一种排序算法。其基本思想是将一个区间内的数据分散到多个有序的桶中,然后分别对每个桶中的元素进行排序,最后将各个桶中的元素按顺序合并,从而得到一个完全有序的数组。

桶排序的步骤描述起来较难理解,下面在代码部分详细解释。

时间复杂度

桶排序时间复杂度最低可达 O ( N ) O(N) O(N),非常高。但是但凡数据跨度比较大、bucketsize(下面会解释是什么)选取的函数不那么合适,就会导致时间和空间复杂度剧烈变化,可能直接造成代码崩溃。

实现
void BucketSort(int* arr, int n)
{
	int max = arr[0];
	int min = arr[0];
	for (int i = 1; i < n; ++i)
	{
		if (arr[i] > max)
		{
			max = arr[i];
		}
		if (arr[i] < min)
		{
			min = arr[i];
		}
	}
	int range = max - min + 1;
	int bucketSize = 5;	//这里对不同的情形需要设置不同的数字,效率差距非常大
	int bucketCount = range / bucketSize + 1;
	int** bucket = (int**)malloc(sizeof(int*) * bucketCount);
	for (int i = 0; i < bucketCount; ++i)
	{
		bucket[i] = (int*)malloc(sizeof(int) * n);
	}
	int* count = (int*)malloc(sizeof(int) * bucketCount);
	memset(count, 0, sizeof(int) * bucketCount);
	for (int i = 0; i < n; ++i)
	{
		int index = (arr[i] - min) / bucketSize;
		bucket[index][count[index]++] = arr[i];
	}
	int index = 0;
	for (int i = 0; i < bucketCount; ++i)
	{
		InsertSort(bucket[i], count[i]);	//采用插入排序只是一种方法,这里不唯一
		for (int j = 0; j < count[i]; ++j)
		{
			arr[index++] = bucket[i][j];
		}
	}
	for (int i = 0; i < bucketCount; ++i)
	{
		free(bucket[i]);
	}
	free(bucket);
	bucket = NULL;
	free(count);
	count = NULL;
}

在上方实现中,我们首先确定了数据范围range。

然后我们要根据 range 确定每一个桶内我们要存放范围大小为多少的数据,也就是bucketSize。注意,这不是说每个bucket只能放bucketSize个数据,而是可以放多少值不同的数据(相同值可以无限叠放)。

随后我们就计算出了桶的数量bucketCount,并且创建了这么多桶。同时每一个桶都配备了一个计数器(对应到count数组里)。

最后就是与计数排序类似的步骤,数据分桶再收集即可。

测试

100万0~99的数据,bucketSize = 2:

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

100万0~99的数据,bucketSize = 5:

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

100万0~99的数据,bucketSize = 1:

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

5.3 基数排序

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

基数排序是对计数排序的一个升级方法。只要我们==把数组中的数从低位到高位逐次进行只看某一位的计数排序,最终就能得到有序的数组。==这可能有些难以理解,但是我们可以看一个例子:

数组=[170,45,75,90,802,24,2,66]

我们将按照十进制的个位、十位、百位等进行排序。这里最大的数字是802,有三位数字,所以我们将进行三轮排序。

第一轮:按个位排序

  • 170的个位是0
  • 45的个位是5
  • 75的个位是5
  • 90的个位是0
  • 802的个位是2
  • 24的个位是4
  • 2的个位是2
  • 66的个位是6

按个位排序的结果为:170,90,802,2,24,45,75,66170,90,802,2,24,45,75,66

第二轮:按十位排序

  • 170的十位是7
  • 90的十位是9
  • 802的十位是0
  • 2的十位是0(没有十位,视为0)
  • 24的十位是2
  • 45的十位是4
  • 75的十位是7
  • 66的十位是6

按十位排序的结果为:802,2,24,45,66,170,75,90802,2,24,45,66,170,75,90

第三轮:按百位排序

  • 802的百位是8
  • 2的百位是0(没有百位,视为0)
  • 24的百位是0
  • 45的百位是0
  • 66的百位是0
  • 170的百位是1
  • 75的百位是0
  • 90的百位是0

按百位排序的结果为:2,24,45,66,75,90,170,8022,24,45,66,75,90,170,802

最终排序结果为:2,24,45,66,75,90,170,8022,24,45,66,75,90,170,802

时间复杂度

基数排序的时间复杂度仅为 O ( k ×   N ) O(k\times\,N) O(k×N),非常高效。

实现
void RadixSort(int* arr, int n)
{
	int max = arr[0];
	for (int i = 1; i < n; ++i)
	{
		if (arr[i] > max)
		{
			max = arr[i];
		}
	}
	int maxDigit = 0;
	while (max)
	{
		max /= 10;
		++maxDigit;
	}
	int* count = (int*)malloc(sizeof(int) * 10);
	int* bucket = (int*)malloc(sizeof(int) * n);
	int radix = 1;
	for (int i = 0; i < maxDigit; ++i)	//@
	{
		memset(count, 0, sizeof(int) * 10);
		for (int j = 0; j < n; ++j)
		{
			count[(arr[j] / radix) % 10]++;
		}
		for (int j = 1; j < 10; ++j)
		{
			count[j] += count[j - 1];
		}
		for (int j = n - 1; j >= 0; --j)
		{
			bucket[--count[(arr[j] / radix) % 10]] = arr[j];
		}
		memcpy(arr, bucket, sizeof(int) * n);
		radix *= 10;
	}
	free(count);
	count = NULL;
	free(bucket);
	bucket = NULL;
}

对于上方@标记的循环体中的3个子循环,这里需要给出一些解锁:

  1. 第一个for循环

    循环遍历整个数组,计算当前位的数字(个位、十位、百位等),并对应的增加 count 数组中对应索引的值。这里 a r r [ j ] / r a d i x %   10 arr[j]/radix\%\,10 arr[j]/radix%10 计算出当前位的值(如个位、十位等),count 数组用来记录每个数字(0-9)在当前位出现的次数。

  2. 第二个for循环

    通过累加前一个索引的 count 值,将 count 数组转化为前缀和数组。这一步是为了在下一个循环中能够直接定位每个元素在 bucket 中的存放位置。每个元素的存放位置取决于它当前位的值,并使用前缀和确定其在 bucket 中的结束位置。

  3. 第三个for循环

    从数组的最后一个元素开始向前遍历,这样可以保持排序的稳定性(即相同值的元素保持原有顺序)。通过查找当前位的数字对应的 count 数组值,确定元素在 bucket 中的位置(使用--count是为了下次遇到同样的数时位置向前移动一个单位),然后将元素放在 bucket 中相应的位置。

测试

下面是对一千万个随机数据的排序测试(数据在0到32767):

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

下面是对一千万个随机数据的排序测试(数据在0到十亿):

椋鸟数据结构笔记#10:排序·中,数据结构笔记,数据结构,笔记,算法

局限性

可以看到,基数排序一定程度上减除了计数排序对大范围数据处理的劣势,但是也增加了空间复杂度。与此同时,基数排序依旧保留了计数排序只能处理整数的缺点。文章来源地址https://www.toymoban.com/news/detail-857667.html

到了这里,关于椋鸟数据结构笔记#10:排序·中的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构——排序算法——归并排序

    在第二个列表向第一个列表逐个插入的过程中,由于第二个列表已经有序,所以后续插入的元素一定不会在前面插入的元素之前。在逐个插入的过程中,每次插入时,只需要从上次插入的位置开始,继续向后寻找插入位置即可。这样一来,我们最多只需要将两个有序数组遍历

    2024年02月09日
    浏览(42)
  • 【排序算法】数据结构排序详解

    前言: 今天我们将讲解我们数据结构初阶的最后一部分知识的学习,也是最为“炸裂”的知识---------排序算法的讲解!!!! 排序 :所谓排序,就是使一串记录,按照其中的某个或某些的大小,递增或递减的排列起来的操作。 稳定性 :假定在待排序的记录序列中,

    2023年04月08日
    浏览(49)
  • 【数据结构与算法】十大经典排序算法-希尔排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 希尔排序是一种插入排序的改进版本,旨在解决插入排序在处理大规模数据时的效率问题。通过将数组分为多个子序列并对

    2024年02月12日
    浏览(75)
  • 【数据结构与算法】十大经典排序算法-插入排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 插入排序(Insertion Sort)是一种简单直观的排序算法,其基本思想是将一个记录插入到已排好序的有序序列中,直到所有记录

    2024年02月13日
    浏览(80)
  • 【数据结构与算法】十大经典排序算法-冒泡排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌴 掘金 :HelloCode 🌞 知乎 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过重复地交换相邻元素的位置来将最大(或最小)的元素逐步“冒泡”到

    2024年02月14日
    浏览(69)
  • 【数据结构与算法】十大经典排序算法-快速排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 快速排序(Quick Sort)是一种高效的排序算法,是对冒泡排序的优化。它采用分治法(Divide and Conquer)的思想,将待排序序列

    2024年02月13日
    浏览(62)
  • 数据结构——排序算法之快速排序

        个人主页: 日刷百题 系列专栏 : 〖C/C++小游戏〗 〖Linux〗 〖数据结构〗   〖C语言〗 🌎 欢迎各位 → 点赞 👍+ 收藏 ⭐️+ 留言 📝  ​ ​ 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法。 基本思想: 任取待排序元素序列中 的某元素作为基准值,按照

    2024年01月21日
    浏览(54)
  • 【数据结构与算法】排序算法(选择排序,冒泡排序,插入排序,希尔排序)

    基本概念这了就不浪费时间解释了,这四种都是很简单的排序方式,本专栏后续文章会出归并排序,计数排序,快速排序,堆排序,桶排序等排序算法,今天这篇文章中给出选择排序,冒泡排序,插入排序和希尔排序的实现; 如果发现文章中有错误,还请大家指出来,我会非

    2024年02月15日
    浏览(81)
  • 数据结构与算法-排序算法

    递归将整个函数的调用过程 调用过程 如何在CSDN博客中插入公式和各种符号 类似二叉树的后续遍历 递归行为和递归行为时间复杂度的估算 master 公式 : T ( n ) = a × T ( n b ) + O ( n d ) T(n) = a times T (frac{n}{b}) + O(n^d) T ( n ) = a × T ( b n ​ ) + O ( n d ) T ( n ) T(n) T ( n ) : 母问题的规模

    2024年02月15日
    浏览(51)
  • 算法 数据结构 递归插入排序 java插入排序 递归求解插入排序算法 如何用递归写插入排序 插入排序动图 插入排序优化 数据结构(十)

    1. 插入排序(insertion-sort):                                           是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入     算法稳定性:                  

    2024年02月09日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包