【布客技术评论】大模型开源与闭源:原因、现状与前景

这篇具有很好参考价值的文章主要介绍了【布客技术评论】大模型开源与闭源:原因、现状与前景。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在人工智能领域,大模型的开源与闭源一直是一个备受争议的话题。近期,某大厂厂长说了“开源模型永远超不过闭源模型”,结果,脸书就发布了开源模型Llama3,超过了OpenAI 的闭源模型 GPT4。本文将探讨大模型开源与闭源的原因、当前状况以及未来前景,以期为读者提供深入的理解和分析。

算力稀缺性的考量

算力,作为人工智能领域的核心资源,对于大模型的训练和应用至关重要。当算力稀缺时,开发者往往倾向于选择闭源模式以赚取利润。这是因为算力稀缺时,训练模型的门槛较高,入局的玩家就少,产品就具有盈利的可能。

然而,当算力不再稀缺,开发者就无法通过闭源模型提供服务获得足够的利润,他们可能会倾向于选择开源模式。开源不仅可以帮助开发者赚取名声,提升个人或团队的知名度,还能够促进技术的创新和进步。通过开源,开发者可以吸引更多的社区参与和贡献,共同推动人工智能技术的不断完善和发展。

文生图模型就是个很好的例子,此类模型中,StableDiffusion 和 NovelAI 是开源的,MidJourney 和 DALLE3 是闭源的(其前身DALLE2也是开源的)。然而模型不仅仅指代架构,还包含模型参数。如果我们按照不同参数统计模型个数,开源社区中的 StableDiffusion 模型数量远远多于其它架构的模型,并且远远多于大语言模型的个数总和。

究其原因,StableDiffusion 模型在一张 4GB 的家用显卡就能训练或者微调这类模型,因此每个文生图用户都有条件来训练新的模型。正所谓“没有人一直开源,但总有开源的人”,假设在模型训练者中,有1%~10%能够将其模型开源,开源生态也能欣欣向荣。

开源模型才是终极答案

开源模型在服务B端和C端用户方面都具有显著的优势。对于B端用户而言,他们通常有天然的保密需求,内部资料不能外传。因此,开源模型能够为他们提供一个安全、可靠的私有化部署平台,让他们在保护内部资料的同时,充分利用大模型技术的优势。此外,B端用户还可以根据自己的业务需求对开源模型进行定制和优化,以满足特定的应用场景。

对于C端用户来说,他们的需求千人千面,需要微调大语言模型来实现个性化服务。例如,很多C端用户都有强烈的角色扮演和对话需求,而模型是否能够胜任取决于是否在海量的角色扮演对话数据集上进行微调。这类短对话数据集比起互联网上大量长文本来说,简直是沧海一粟,需要特地由人工撰写或者补全。

目前来看,只有ChatGPT4和ChatGLM4这两个闭源模型能够胜任这类任务。但如果采用开源模型加微调,那就不一样了,这使得开源模型在C端市场中具有更大的应用潜力。通过微调开源模型,C端用户可以获得更加精准、个性化的服务体验,极大满足用户各方面的需求。

闭源模型并不是稳赚不赔

尽管闭源模型在一定程度上能够保护开发者的利益,但是投资做大语言模型并不是稳赚不赔的。我们都知道芯片流片一次要几百万,但是做一个大语言模型,至少要乘个几百到几千倍。就算有了充足的资金,所需的算力也并不能马上部署到位。

可见训练大模型的成本已经与定制硬件相差无几,而硬件作为模型的上游产业,其技术进步和成本变化对大模型的影响不可忽视。随着未来更先进的硬件技术的出现,人人都有可能训练出当前规模,也就是几B到几十B的大语言模型,这使得当前闭源模型的投入可能面临打水漂的风险。

假如有两个老板,一个人投资大语言模型,而另一个人投资硬件。投资硬件的人得到了单位面积算力提升几十到几百倍的芯片,使得更多的人能训练大语言模型。那么显而易见,投资大语言模型的人就玩完了。

这就好比,卖铲子的人往往比挖矿的人赚钱,因为铲子作为工具,其需求相对稳定且广泛,而挖矿则存在较大的不确定性和风险。同样地,在人工智能领域,提供大模型训练算力的公司可能会比直接训练和应用大模型的公司更具经济效益。这些公司还可以通过提供算力、数据、算法等支持服务,从多个维度获取收益,降低单一业务的风险。

未来展望

综上,大语言模型也好,文生图模型也好,无论什么模型要想更好服务人类,解放生产力,就必须能够开源并且端侧部署。这是毋庸置疑的。

随着大语言模型数量增长,越来越多的人会加入它的上游,也就是硬件领域,带来硬件的突破进展。而随着硬件的进展,越来越多的开发者将倾向于选择开源模式以共享模型、促进技人工智能进步。

可能这就是新的指数爆炸,AI 发现新的物理规律,新的物理规律能够设计更强的硬件,更强的硬件能欧训练更强的AI。比起软件领域自己的指数爆炸,新的指数爆炸贯穿了理学、硬件和软件,将我们的世界连成一个闭环。文章来源地址https://www.toymoban.com/news/detail-857809.html

到了这里,关于【布客技术评论】大模型开源与闭源:原因、现状与前景的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • iBooker 布客技术评论 20230818

    一、程序员自检手册 为了避免焦虑,你首先需要做的就是梳理你的业务: (1)你所在的行业是轻资产还是重资产? 重资产就是人绕着机器转,创业需要买一大堆设备。如果是重资产,赶紧换一个。 (2)你在行业中的位置,离最终用户有多远? 如果中间有一堆中间商赚差价

    2024年02月12日
    浏览(31)
  • 开源vs闭源大模型如何塑造技术的未来?开源模型的优劣势&未来发展方向

    创作活动:https://activity.csdn.net/creatActivity?id=10606 开源和闭源,两种截然不同的开发模式,对于大模型的发展有着重要影响。开源让技术共享,吸引了众多人才加入,推动了大模的创新。而闭源则保护了商业利益和技术优势,为大模型的商业应用提供了更好的保障。 那么,你

    2024年02月04日
    浏览(62)
  • 开源大模型正在“杀死”闭源?

    点击关注 文丨郝 鑫,编丨刘雨琦 “OpenAI不足为惧,开源会慢慢赶上来。” 彼时Hugging Face创始人Clem Delangue的一句预言,正在迅速成为现实。 ChatGPT横空出世7个多月后,7月19日,Llama 2宣布开源,并且可直接商用。 如今回看,这一天也成为了大模型发展的分水岭。在此之前,全

    2024年02月07日
    浏览(34)
  • 大模型,开源干不掉闭源

    开源大模型对闭源大模型的冲击,变得非常猛烈。 今年3月,Meta发布了Llama(羊驼),很快成为AI社区内最强大的开源大模型,也是许多模型的基座模型。有人戏称,当前的大模型集群,就是一堆各种花色的“羊驼”。 而就在前些天,Meta又推出了免费可商用版本的“羊驼2号”

    2024年02月15日
    浏览(40)
  • 开源 vs 闭源:数字化时代的技术选择

    开源 vs 闭源:数字化时代的技术选择 近期,特斯拉CEO马斯克的一番言论引起了广泛关注:OpenAI不该闭源,自家首款聊天机器人将开源。这引发了人们对于开源与闭源软件的辩论,这一话题在技术界一直是热门的讨论焦点。在数字化时代,开源与闭源之争究竟意味着什么? 开

    2024年01月16日
    浏览(48)
  • 开源没有止境,闭源才是贵族?——论大模型的发展与开闭源商业模式哪个能激流勇进

    开源和闭源是两种不同的软件开发和管理模式,它们各有优劣势。以下是开源和闭源在质量、安全性、产业化、适应性、可靠性等方面的优缺点分析: 质量 开源的优势: 开源软件由于源代码开放,吸引了大量开发者参与,通过社区的力量进行代码审查和问题修复,有助于提

    2024年02月02日
    浏览(46)
  • 阿里云开源通义千问720亿参数模型,性能超越大部分商用闭源大模型

    12月1日,阿里云举办通义千问发布会,开源通义千问720亿参数模型Qwen-72B。Qwen-72B在10个权威基准测评创下开源模型最优成绩,成为业界最强开源大模型,性能超越开源标杆Llama 2-70B和大部分商用闭源模型。未来,企业级、科研级的高性能应用,也有了开源大模型这一选项。 通

    2024年02月03日
    浏览(64)
  • AI声音克隆模型常见问题汇总笔记(附解决方法,可评论区留言问题技术交流

    声明: 源码非原创,转载自小破站UP主Jack-Cui,文章部分内容来源网路,本文只用于技术分享,模型训练与语音输出已测试成功。 硬件配置工具及运行环境 名词解释: batch_size :计算效率和内存容量之间的平衡参数。若为高性能GPU,可以设置更大的batch_size值 epochs :所有样本

    2024年02月01日
    浏览(43)
  • 【OpenCv • c++】形态学技术操作 —— 开运算与闭运算

    🚀 个人简介:CSDN「 博客新星 」TOP 10 , C/C++ 领域新星创作者 💟 作    者: 锡兰_CC ❣️ 📝 专    栏: 【OpenCV • c++】计算机视觉 🌈 若有帮助,还请 关注➕点赞➕收藏 ,不行的话我再努努力💪💪💪 在上一篇文章中,我

    2024年02月05日
    浏览(53)
  • 开源和闭源的优劣势比较

    开源与闭源软件之争一直是技术领域一个备受关注的话题,而在近期特斯拉CEO马斯克的表态中,关于开源的讨论更是引发了广泛的关注。以下是一些关于开源和闭源的优劣势以及对未来大模型发展的一些见解: 开源软件的优势: 创新与合作: 开源软件通常能够吸引全球范围

    2024年02月04日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包