【Hadoop】- MapReduce概述[5]

这篇具有很好参考价值的文章主要介绍了【Hadoop】- MapReduce概述[5]。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言

一、分布式计算框架 - MapReduce

二、MapReduce执行原理


前言

MapReduce是一种分布式计算框架,由Google开发。它的设计目标是将大规模数据集的处理和生成任务分布到一个由廉价计算机组成的集群中。

在MapReduce模型中,输入数据被分割成若干小块,并在集群中的多个节点上并行处理。每个节点执行"map"函数,将输入数据转换为一组键值对。这些键值对将进行洗牌和排序,并将生成的中间数据发送到"reduce"函数。

"reduce"函数将中间数据进行处理,将其合并为最终结果或输出。它根据所需的计算或分析对数据进行聚合和分析。

MapReduce提供了容错机制,系统可以通过将工作负载重新分配到其他节点来自动处理单个节点的失败。它还提供了可扩展性,可以通过添加更多的节点来处理更大的数据集或增加的处理需求。

MapReduce广泛用于大数据处理应用,例如分布式网络索引、日志分析和数据挖掘。它对其他数据处理系统的发展产生了影响,如Apache Hadoop。

一、分布式计算框架 - MapReduce

MapReduce是“分散”->“汇总”模式的分布式计算框架,可供开发人员开发相关程序进行分布式数据计算。MapRduce提供了2个编程接口:

  • Map
  • Reduce

其中

  • Map功能接口提供了“分散”的功能,有服务器分布式对数据进行处理
  • Reduce功能接口提供了“汇总”的功能,将分布式的处理结果汇总统计

用户如需使用MapReduce框架完成自定义需求的程序开发,只需要使用Java、Python等编程语言,实现Map Reduce功能接口即可。

二、MapReduce执行原理

现在,我们借助一个案例,简单分析MapReduce是如何完成分布式计算的。

假设有如下文件,内部记录了许多的单词。并且已经开发好了一个MapReduce程序,功能是统计每个单词出现的次数。

【Hadoop】- MapReduce概述[5],hadoop,hadoop,mapreduce,大数据

假设有4台服务器用以执行MapReduce任务,可以3台服务器执行Map,1台服务器执行Reduce

【Hadoop】- MapReduce概述[5],hadoop,hadoop,mapreduce,大数据

总结

1、什么是MapReduce

  • MapReduce是Hadoop中的分布式计算组件
  • MapReduce可以以分散->汇总模式执行分布式计算任务

2、MapReduce的主要编程接口文章来源地址https://www.toymoban.com/news/detail-857929.html

  • map接口,主要提供“分散”功能,有服务器分布式处理数据
  • reduce接口,主要提供“汇总”功能,进行数据汇总统计得到结果
  • MapReduce可供Java、Python等语言开发计算程序

到了这里,关于【Hadoop】- MapReduce概述[5]的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据开发之Hadoop(MapReduce)

    MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。 MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。 1.2.1 优点 1、MapReduce易于编程 它简单的实现一些

    2024年01月22日
    浏览(49)
  • 大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——MapTask工作机制

    MapTask工作机制如下图所示。 (1)Read阶段:MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。 (2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。 (3)Collect收集阶段:在用户编写map()函数中,当数据处

    2023年04月08日
    浏览(66)
  • 大数据课程D4——hadoop的MapReduce

    文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州 ⚪ 了解MapReduce的作用和特点; ⚪ 掌握MapReduce的组件; ⚪ 掌握MapReduce的Shuffle; ⚪ 掌握MapReduce的小文件问题; ⚪ 掌握MapReduce的压缩机制; ⚪ 掌握MapReduce的推测执行机制; ⚪ 掌握MapReduce的数据倾斜问题; 1.

    2024年02月15日
    浏览(47)
  • 大数据课程D3——hadoop的MapReduce

    文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州 ⚪ 了解MapReduce的作用和特点; ⚪ 掌握MapReduce的组件; ⚪ 掌握MapReduce的Shuffle; ⚪ 掌握MapReduce的小文件问题; ⚪ 掌握MapReduce的压缩机制; ⚪ 掌握MapReduce的推测执行机制; ⚪ 掌握MapReduce的数据倾斜问题; 1.

    2024年02月14日
    浏览(43)
  • Hadoop学习:深入解析MapReduce的大数据魔力(三)

    (1)Read阶段:MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。 (2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。 (3)Collect 收集阶段:在用户编写 map()函数中,当数据处理完成后,一般会调用

    2024年02月12日
    浏览(41)
  • 【大数据】Hadoop_MapReduce➕实操(附详细代码)

    MapReduce是hadoop的核心组件之一,hadoop要分布式包括两部分,一是分布式文件系统hdfs,一是分布式计算框,就是mapreduce,二者缺一不可,也就是说,可以通过mapreduce很容易在hadoop平台上进行分布式的计算编程 sftp命令:Windows下登录Hadoop102 xftp root@hadoop102 , lcd 切换Windows路径,

    2024年02月01日
    浏览(38)
  • 大数据面试题集锦-Hadoop面试题(三)-MapReduce

    你准备好面试了吗?这里有一些面试中可能会问到的问题以及相对应的答案。如果你需要更多的面试经验和面试题,关注一下\\\"张飞的猪大数据分享\\\"吧,公众号会不定时的分享相关的知识和资料。 目录 1、谈谈Hadoop序列化和反序列化及自定义bean对象实现序列化? 2、FileInputForma

    2024年02月11日
    浏览(57)
  • Hadoop mapreduce课程设计-全球历史平均气温数据分析

    文章目录 前言 一、工具介绍 二、mapreduce数据处理 1.数据集准备  2.要求:对不同洲的平均温度处理--得到各大洲的平均温度 2.1 mapper阶段 2.2 reduce阶段 2.3 分区 2.4 Driver阶段 3.结果展示  4.将数据放入mongodb数据库 4.1 ktr展示 4.2 mongodb数据展示 ​编辑  5.使用pandas和pyecharts将数据

    2024年02月03日
    浏览(51)
  • Hadoop学习:深入解析MapReduce的大数据魔力之数据压缩(四)

    压缩的优点:以减少磁盘IO、减少磁盘存储空间。 压缩的缺点:增加CPU开销。 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 1)压缩算法对比介绍 2)压缩性能的比较 压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否 可以

    2024年02月12日
    浏览(44)
  • 大数据:Hadoop基础常识hive,hbase,MapReduce,Spark

    Hadoop是根据Google三大论文为基础研发的,Google 三大论文分别是: MapReduce、 GFS和BigTable。 Hadoop的核心是两个部分: 一、分布式存储(HDFS,Hadoop Distributed File System)。 二、分布式计算(MapReduce)。 MapReduce MapReduce是“ 任务的分解与结果的汇总”。 Map把数据切分——分布式存放

    2024年04月25日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包