llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署

这篇具有很好参考价值的文章主要介绍了llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

简介

文章列表:

  1. llama-factory SFT系列教程 (一),大模型 API 部署与使用
  2. llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署
  3. llama-factory SFT系列教程 (三),chatglm3-6B 命名实体识别实战

支持的模型列表

模型名 模型大小 默认模块 Template
Baichuan2 7B/13B W_pack baichuan2
BLOOM 560M/1.1B/1.7B/3B/7.1B/176B query_key_value -
BLOOMZ 560M/1.1B/1.7B/3B/7.1B/176B query_key_value -
ChatGLM3 6B query_key_value chatglm3
DeepSeek (MoE) 7B/16B/67B q_proj,v_proj deepseek
Falcon 7B/40B/180B query_key_value falcon
Gemma 2B/7B q_proj,v_proj gemma
InternLM2 7B/20B wqkv intern2
LLaMA 7B/13B/33B/65B q_proj,v_proj -
LLaMA-2 7B/13B/70B q_proj,v_proj llama2
Mistral 7B q_proj,v_proj mistral
Mixtral 8x7B q_proj,v_proj mistral
OLMo 1B/7B att_proj olmo
Phi-1.5/2 1.3B/2.7B q_proj,v_proj -
Qwen 1.8B/7B/14B/72B c_attn qwen
Qwen1.5 0.5B/1.8B/4B/7B/14B/72B q_proj,v_proj qwen
StarCoder2 3B/7B/15B q_proj,v_proj -
XVERSE 7B/13B/65B q_proj,v_proj xverse
Yi 6B/9B/34B q_proj,v_proj yi
Yuan 2B/51B/102B q_proj,v_proj yuan

参考自:https://zhuanlan.zhihu.com/p/689333581

  • 默认模块 作为 --lora_target 参数的默认值,也可使用 --lora_target all 参数指定全部模块;

  • –template 参数可以是 default, alpaca, vicuna 等任意值。但“对话”(Chat)模型请务必使用对应的模板。

项目所支持模型的完整列表请参阅 constants.py。

2. 添加自定义数据集

LLaMA-Factory 数据集说明,参考该文件给出的说明,在dataset_info.json 文件中添加配置信息;

参考如下数据集格式,定义自定义数据集;

[
  {
    "instruction": "用户指令(必填)",
    "input": "用户输入(选填)",
    "output": "模型回答(必填)",
    "system": "系统提示词(选填)",
    "history": [
      ["第一轮指令(选填)", "第一轮回答(选填)"],
      ["第二轮指令(选填)", "第二轮回答(选填)"]
    ]
  }
]

新数据集内容如下:
diy.json

[
  {
    "instruction": "你是谁?",
    "input": "",
    "output": "我是Qwen,edit by JieShin.",
    "history": []
  },
  {
    "instruction": "你能帮我干些什么?",
    "input": "",
    "output": "我能和你互动问答,我的其他功能正在开发中。",
    "history": []
   }
]

添加自定义数据集的步骤如下:

  1. diy.json 文件保存到 LLaMA-Factory/data 文件夹下;

llamafactory找不到目录的数据集,大模型,自然语言处理

  1. 在 dataset_info.json 文件中,配置数据集
    首先计算 diy.json 文件的sha1sum, sha1sum diy.json
    llamafactory找不到目录的数据集,大模型,自然语言处理
    vim dataset_info.json 添加自定义数据集的配置信息, 把 diy.json 文件的sha1 值添加到文件中,"diy" 为该数据集名;
    llamafactory找不到目录的数据集,大模型,自然语言处理

3. lora 微调

使用配置好的 diy 数据集进行模型训练;

--model_name_or_path qwen/Qwen-7B,只写模型名,不写绝对路径可运行成功,因为配置了export USE_MODELSCOPE_HUB=1

查看 配置是否生效,输出1 即为配置成功:
echo $USE_MODELSCOPE_HUB

llamafactory找不到目录的数据集,大模型,自然语言处理

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path qwen/Qwen-7B \
--dataset diy \
--template qwen \
--finetuning_type lora \
--lora_target c_attn \
--output_dir /mnt/workspace/llama_factory_demo/qwen/lora/sft \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_strategy epoch \
--learning_rate 5e-5 \
--num_train_epochs 50.0 \
--plot_loss \
--fp16

训练完成的lora 权重,保存在下述文件夹中;
--output_dir /mnt/workspace/llama_factory_demo/qwen/lora/sft

模型的训练结果如下:
llamafactory找不到目录的数据集,大模型,自然语言处理

lora 训练后的权重如下图所示:
llamafactory找不到目录的数据集,大模型,自然语言处理

4. 大模型 + lora 权重,部署

由于llama-factory 不支持 qwen 结合 lora 进行推理,故需要把 lora 权重融合进大模型成一个全新的大模型权重;

可查看如下链接,了解如何合并模型权重:merge_lora GitHub issue

下述是合并 lora 权重的脚本,全新大模型的权重保存到 export_dir 文件夹;

CUDA_VISIBLE_DEVICES=0 python src/export_model.py \
    --model_name_or_path qwen/Qwen-7B \
    --adapter_name_or_path /mnt/workspace/llama_factory_demo/qwen/lora/sft/checkpoint-50 \
    --template qwen \
    --finetuning_type lora \
    --export_dir /mnt/workspace/merge_w/qwen \
    --export_size 2 \
    --export_legacy_format False

使用融合后到大模型进行推理,model_name_or_path 为融合后的新大模型路径

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \
    --model_name_or_path /mnt/workspace/merge_w/qwen \
    --template qwen \
    --infer_backend vllm \
    --vllm_enforce_eager \
~                             

模型请求脚本

curl -X 'POST' \
  'http://0.0.0.0:8000/v1/chat/completions' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "model": "string",
  "messages": [
    {
      "role": "user",
      "content": "你能帮我做一些什么事情?",
      "tool_calls": [
        {
          "id": "call_default",
          "type": "function",
          "function": {
            "name": "string",
            "arguments": "string"
          }
        }
      ]
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "string",
        "description": "string",
        "parameters": {}
      }
    }
  ],
  "do_sample": true,
  "temperature": 0,
  "top_p": 0,
  "n": 1,
  "max_tokens": 128,
  "stream": false
}'

模型推理得到了和数据集中一样的结果,这说明 lora 微调生效了;
llamafactory找不到目录的数据集,大模型,自然语言处理

以为设置了 "stop": "<|endoftext|>",模型会在遇到结束符自动结束,但模型依然推理到了最长的长度后结束,设置的 stop 并没有生效;

llamafactory找不到目录的数据集,大模型,自然语言处理

llama-factory的作者表示还没有支持stop,万一未来支持了stop功能,大家可以关注这个issue support “stop” in api chat/completions #3114

问题

虽然设置了 "temperature": 0 , 但是模型的输出结果依然变动很大,运行3-4次后,才出现训练数据集中的结果;文章来源地址https://www.toymoban.com/news/detail-857933.html

参考资料

  • api 参数列表
  • 使用LLaMa-Factory简单高效微调大模型
    展示了支持的大模型列表;

到了这里,关于llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 源2.0大模型适配LLaMA-Factory框架!

    近日, 源2.0开源大模型与LLaMA-Factory框架完成全面适配 ,用户通过LLaMA-Factory,即可快捷、高效地对不同参数规模的源2.0基础模型进行全量微调及高效微调,轻松实现专属大模型。 LLM(大语言模型)微调,是指在大模型的基础上,针对特定任务或领域进行调整和优化,以提升

    2024年01月21日
    浏览(44)
  • 小白也能微调大模型:LLaMA-Factory使用心得

    大模型火了之后,相信不少人都在尝试将预训练大模型应用到自己的场景上,希望得到一个垂类专家,而不是通用大模型。 目前的思路,一是RAG(retrieval augmented generation),在模型的输入prompt中加入尽可能多的“目标领域”的相关知识,引导模型在生成时尽量靠拢目标领域,运

    2024年04月13日
    浏览(50)
  • 快速上手!LLaMa-Factory最新微调实践,轻松实现专属大模型

    Yuan2.0(https://huggingface.co/IEITYuan)是浪潮信息发布的新一代基础语言大模型,该模型拥有优异的数学、代码能力。自发布以来,Yuan2.0已经受到了业界广泛的关注。当前Yuan2.0已经开源参数量分别是102B、51B和2B的3个基础模型,以供研发人员做进一步的开发。 LLM(大语言模型)微

    2024年01月20日
    浏览(52)
  • LLaMA-Factory可视化界面微调chatglm2;LoRA训练微调模型 简单案例

    参考:https://github.com/huggingface/peft https://github.com/hiyouga/LLaMA-Factory 类似工具还有流萤,注意是做中文微调训练这块;来训练微调的chatglm2需要完整最新文件,不能是量化后的模型;另外测试下来显卡资源要大于20来G才能顺利,这边T4单卡训练中间显存不足,需要开启4bit量化才行

    2024年02月05日
    浏览(52)
  • 【本地大模型部署与微调】ChatGLM3-6b、m3e、one-api、Fastgpt、LLaMA-Factory

    本文档详细介绍了使用ChatGLM3-6b大模型、m3e向量模型、one-api接口管理以及Fastgpt的知识库,成功的在本地搭建了一个大模型。此外,还利用LLaMA-Factory进行了大模型的微调。 1.ChatGLM3-6b 2.m3e 3.One-API 4.Fastgpt 5.LLaMA-Factory 1.1创建腾讯云服务器 注意: ChatGLM3-6b的大模型40多个G,购买腾讯

    2024年03月22日
    浏览(45)
  • LLaMA-Factory添加adalora

    感谢https://github.com/tsingcoo/LLaMA-Efficient-Tuning/commit/f3a532f56b4aa7d4200f24d93fade4b2c9042736和https://github.com/huggingface/peft/issues/432的帮助。 1. 修改src/llmtuner/hparams/finetuning_args.py代码 在FinetuningArguments中修改finetuning_type,添加target_r和init_r 修改__post_init__函数 2. 修改src/llmtuner/tuner/core/adapter

    2024年01月17日
    浏览(47)
  • LLaMA-Factory参数的解答

    打开LLaMA-Factory的web页面会有一堆参数 ,但不知道怎么选,选哪个,这个文章详细解读一下,每个参数到底是什么含义 这是个人写的参数解读,我并非该领域的人如果那个大佬看到有参数不对请反馈一下,或者有补充的也可以!谢谢(后续该文章可能会持续更新) LLaMA-Facto

    2024年04月11日
    浏览(38)
  • Llama3-8B+ LLaMA-Factory 中文微调

    Llama3是目前开源大模型中最优秀的模型之一,但是原生的Llama3模型训练的中文语料占比非常低,因此在中文的表现方便略微欠佳! 本教程就以Llama3-8B-Instruct开源模型为模型基座,通过开源程序LLaMA-Factory来进行中文的微调,提高Llama3的中文能力!LLaMA-Factory是一个开源的模型训

    2024年04月27日
    浏览(47)
  • 使用LLaMA-Factory微调ChatGLM3

    略 (1)下载LLaMA-Factory https://github.com/hiyouga/LLaMA-Factory (2)安装依赖 (3)启动LLaMA-Factory的web页面 得到如下页面: 设置如下参数,点击开始即可: 点击“预览命令”,可以看到要执行的python脚本,如下所示:

    2024年02月03日
    浏览(41)
  • Llama-Factory的baichuan2微调

    Llama-Factory:https://github.com/hiyouga/LLaMA-Factory/tree/main 请使用   来启用 QLoRA 训练。 (1)奖励模型训练 (2)PPO训练(PPO训练需要先进行上一步RM的训练,然后导入微调后模型和RM进行训练输出)        大规模无监督语言模型(LMs)虽然可以学习广泛的世界知识和一些推理技能

    2024年02月05日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包