聊聊路径规划算法(四)——滚动在线RRT算法和BUG算法

这篇具有很好参考价值的文章主要介绍了聊聊路径规划算法(四)——滚动在线RRT算法和BUG算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基本RRT算法更偏向于遍历所有自由空间直到获取可行路由性,这使得它不能够进行未知或动态环境条件中的机器人实时运动计划。利用滚动计划的思路可以将RRT算法加以完善,使之更具有实时规划能力。

 滚动规划

机器人在不确定的或动态周围环境中行走时,可以探知在其传感器区域内或限定区域的周围环境讯息。机器人可以使用局部信息制定局部运动规划,并使用适当的评估标准达到部分总体目标。然后机器人可以在到达部分总体目标以后,继续制定新的部分计划。就这样,不断实施直至抵达新全局目标。

滚动规划算法的基本原理:

环保信息系统预测:在滚动的每一次,机器人通过检测到的视野内的环保信息系统、或任何存在的环保信息系统,建立保护模式,包含设定在已知范围内的环保节点类型信息系统等;

局部的优化:把这些环境信息模式视为下一次优化的窗口,并在此基础上,按照子目标点的实际情况和特定的优化对策,设计出下一次的最佳子总体目标,接着再依据子总体目标的环境信息模式,选用局部规划算法,先设定向子总体目标前进的部分路线,再执行当前对策,即依所制定的部分路线前进若干步骤,窗口也随之往前滑动;

反馈信息修正:通过局部最优路线,驱动机器人走过一个路线时,机器人将检测到新的未知信号,此时可通过其在行进中检测到的信息数据调整或修正原有的环境模式,进行滚动和下步的局部设计。

这里,部分子目标是在滚动窗口中对某个全局目标的进行条件反射,它需要远离障碍物,并符合一些优化目标。子目标的选定方式,体现了对全局优势的追求和对局部整体受限信息条件的折衷,是在给定的社会环境条件下企图进行整体性考虑的天然选项。

通过滚动窗口的路径规划算法把实时检测到的局部环境信号,以滚动方法实现网络设计。在滑动的每一次,将针对已检测到的环境保护局部信息,采用启发式策略生成环境优化子目标,在当前的视窗中完成环境保护局部路径计划,进而执行当前决策(依局部规划路径推移一次),随着滚动窗口推移,将持续地获取最新的环境信息,以便于在滚动中进行环境优化和反馈信息的整合。同时由于环境规划问题压缩在滚动窗口中,其与环境保护全局计划比较的运算工作量将大为减轻。

采用滚动窗口的路径规划方式的具体步骤为:

第一步为0:先对起始、终端、环境、机器人的视线半径、步长等完成初始化;

步骤1:若终点抵达,则规划中止;

操作2:对当前滚动窗内的所有环境消息予以刷新;

步骤3:产生局部子目标;

过程4:基于子目标和现存条件信息,在当前滚动窗口内计划一个经过调整的局部有效路线;

方法5:按规划的局部路径走进每一步,步长必须等于视野半径;

步骤6:返回步骤1。

滚动在线RRT算法流程

在一个滚动窗口内,随机树以当前区域为开始节点,并建立传感器区域内的所有随机树。结构方式与最基本RRT算法相同。但能够使在全局条件中随机树产生朝目标方向发展的态势,在运动规划时导入启发信号,以降低随机树的随机性,并增加搜索效果[7]。

以Road(x1,x2)指代随意树中二个位置节点间的道路价格,Dis(x1,x2)指代随意树中二个位置节点间的欧几里德距离。相似于Astar方法,本方法为随意树中各个节点设定一种估值参数:f(x)=g(x)+h(x)。当中g(x)=Road(x,xrand)为随意节点,而xrand则代表到树中目的结点x所需的道路时间。H(x)是启发的估值参数,在此处可取随意节点xrand到目标节点xgoal的距离作为估计值,h(x)=Dis(xrand,xgoal)。所以,f(x)就代表了从目的节点x经随机结点xrand至目的地节点xgoal的路线估量值。遍历滚动窗内随机树T时,若取估量函数中较小值的结点xnear,则f(xnear)=min(f(x))。它允许随机树按照距离为目标节点估计值f(x)很小的地方开始延伸,如图所示。

聊聊路径规划算法(四)——滚动在线RRT算法和BUG算法,算法,bug


综上,在滚动窗内随机树建立的具体实施方法包括:

1.对滚动窗口随机树T初始化后,T起始时只包括了起始地址S;

2.滚动窗口自由空间中,随机选取了一种状态的xrand;

3.基于最短路线的思想寻找在树T中,与xrand距离最近的结点xnear;

4.选择输入u,将机器人状态由xnear到xnew;

5.确定了xnew是否满足回归分析,不满足则返回第四步骤;

6.将xnew看作随机树T的一个新结点时,u将被写在连接结点xnear的xnew的边上。

滑动窗口的目标空间在进行了K的抽样以后,将遍历随机树,就能够按照启发的估计思路找出当前滑窗口目标空间xsub,xsub是指在当前滑窗口中的每个子树中,所估计最小的节点。选定子目标后,在机器人前完成到达子目标点,并开始下一次的滚动RRT规划工作。过程就这样重复下去,直到抵达了子目标点G。

点击聊聊路径规划算法(四)——滚动在线RRT算法和BUG算法 - 古月居可查看全文文章来源地址https://www.toymoban.com/news/detail-858141.html

到了这里,关于聊聊路径规划算法(四)——滚动在线RRT算法和BUG算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自动驾驶算法(三):RRT算法讲解与代码实现(基于采样的路径规划)

    目录 1 RRT算法原理 2 RRT算法代码解析 3 RRT完整代码         RRT算法的全称是快速扩展随机树算法(Rapidly Exploring Random Tree),它的想法就是从根结点长出一棵树当树枝长到终点的时候这样就能找到从终点到根节点的唯一路径。         算法流程:         首先进行初始化

    2024年02月06日
    浏览(50)
  • 路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)

    1. 背景介绍 路径规划是指在给定的环境中找到从起点到终点的最佳路径的过程。它在现实生活中有着广泛的应用,包括无人驾驶、物流配送、机器人导航等领域。随着人工智能和计算机技术的发展,路径规划技术也在不断地得到改进和应用。 路径规划中常见的算法可以分为

    2024年02月03日
    浏览(50)
  • 路径规划 | 图解RRT*算法(附ROS C++/Python/Matlab仿真)

    🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。 🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法 RRT*算法 针对传统RRT算

    2024年02月06日
    浏览(75)
  • (4)【全局路径规划】基于采样的方法--RRT类算法、PRM算法、Lattice planner等

    提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 TODO:写完再整理

    2024年02月15日
    浏览(36)
  • 【2D/3D RRT* 算法】使用快速探索随机树进行最佳路径规划(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 2D 2.2 3D 🎉3 参考文献 🌈4 Matlab代码实

    2024年02月10日
    浏览(45)
  • 路径规划 | 图解Informed RRT*算法(附ROS C++/Python/Matlab仿真)

    🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。 🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法 传统的RRT算法存在一些

    2024年02月08日
    浏览(117)
  • 路径规划 | 图解RRT-Connect算法(附ROS C++/Python/Matlab仿真)

    🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。 🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法 在原始RRT算法中,终点

    2024年02月08日
    浏览(53)
  • 路径规划 | 图解快速随机扩展树RRT算法(附ROS C++/Python/Matlab仿真)

    🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。 🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法 快速扩展随机扩展树

    2024年02月05日
    浏览(56)
  • 数学建模6——路径规划的各种算法(Dijkstra、Floyd、A*、D*、RRT*、LPA*)

    前言:本文只是简单的介绍一下各路径规划算法的概念和流程,可用于对算法的初步了解,如果要进一步学习,可以在 个人理解 中找到我推荐的其他博主更为完善的文章。 目录 一、Dijkstra 基本概念 基本流程 个人理解 MATLAB代码 二、Floyd 基本概念 基本流程 个人理解 MATLAB代

    2024年02月07日
    浏览(49)
  • 多无人机在线路径规划的新算法

    南京航空航天大学自动化学院使用NOKOV度量动作捕捉系统获取多架无人机的精确位置信息,实现多架无人机协同实时路径规划。 近年来,无人机越来越多地应用于执行战场侦察、目标识别、跟踪打击等任务。 由多架无人机协同执行任务,通过无人机之间的信息交互实现全局性

    2024年02月05日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包