AI大模型探索之路-实战篇1:基于OpenAI智能翻译助手实战落地

这篇具有很好参考价值的文章主要介绍了AI大模型探索之路-实战篇1:基于OpenAI智能翻译助手实战落地。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

在全球化的浪潮中,语言翻译需求日益增长。市场上涌现出各式各样的翻译工具和平台,然而,免费的解决方案往往局限于简短文本的翻译。面对长篇文档,用户通常不得不转向付费服务。鉴于大型预训练语言模型(LLMs)在自然语言翻译上的显著优势,利用这些模型打造一款高效、经济的翻译工具,不仅能满足市场需求,同时亦具备极高的商业潜力与数据安全性。

针对这一需求,我们提出了一个基于OpenAI智能翻译助手的实战落地项目。该项目旨在开发一款支持多语种互译、兼容多种文件格式的翻译工具,以满足用户对长篇文档翻译的需求。


一、需求规格描述

1)支持包括但不限于PDF、Word等多样化的文件格式;
2)实现多语种间的互译功能;
3)兼容并优化多种大型预训练语言模型架构设计

二、系统架构设计

AI大模型探索之路-实战篇1:基于OpenAI智能翻译助手实战落地,AIGC-AI大模型探索之路,AIGC,人工智能,AI编程,python,语言模型,gpt,chatgpt

1)用户通过客户端上传待翻译文件;
2)系统后端进行文件解析,调用适配的大型模型执行翻译任务,并将翻译结果整合为新文档;
3)最终将翻译后的文档返回给用户以供下载。

三、技术实施方案

1)方案一:基于目标大型模型选择对应的API接口,自主封装模型调用流程;
2)方案二:采用LangChain框架,以简化大型模型集成过程,该框架负责隔离并封装模型调用细节。

本次先采用方案一实现,后续再引入LangChain框架简化改造。

四、核心功能说明

  1. 文本:高精度文本解析;
  2. 表格:表格内容智能辨识与翻译;
  3. 图片:图片内文字暂不予处理,考虑到其处理难度及相对较低的需求优先级。

五、开源技术选型

选择对文本和表格支持性比较好的pdfplumber
AI大模型探索之路-实战篇1:基于OpenAI智能翻译助手实战落地,AIGC-AI大模型探索之路,AIGC,人工智能,AI编程,python,语言模型,gpt,chatgpt

六、代码实现细节

1.图形用户界面(GUI)的开发

核心代码样例:

def launch_gui(args):
    global global_args
    global_args = args
    iface = gr.Interface(
        fn=translate_with_gui,
        inputs=[
            gr.File(label="上传PDF文件"),
            gr.Dropdown(choices=["中文", "日语", "西班牙语"], value="中文", label="选择目标语言"),  # 这里添加了default参数
            gr.Dropdown(choices=["OpenAIModel", "GLMModel"], value="OpenAIModel", label="选择大模型"),  # 这里添加了default参数
            gr.Radio(choices=["PDF", "Markdown","word"], value="PDF", label="选择输出格式")  # 选择输出格式
        ],
        outputs=gr.Textbox(label="输出结果")
    )
    iface.launch()

AI大模型探索之路-实战篇1:基于OpenAI智能翻译助手实战落地,AIGC-AI大模型探索之路,AIGC,人工智能,AI编程,python,语言模型,gpt,chatgpt

2.大型模型调用的模块化封装

核心代码样例:

class OpenAIModel(Model):
    def __init__(self, model: str, api_key: str):
        self.model = model
        openai.api_key = api_key

    def make_request(self, prompt):
        attempts = 0
        while attempts < 3:
            try:
                if self.model == "gpt-3.5-turbo":
                    response = openai.ChatCompletion.create(
                        model=self.model,
                        messages=[
                            #{"role": "system", "content": super.get_system_prompt()},
                            {"role": "user", "content": prompt},
                        ]
                    )
                    translation = response.choices[0].message['content'].strip()
                else:
                    response = openai.Completion.create(
                        model=self.model,
                        prompt=prompt,
                        max_tokens=150,
                        temperature=0
                    )
                    translation = response.choices[0].text.strip()

                return translation, True

3.文档解析翻译结果处理

1)文档解析:引用工具插件将对文档进行解析,页、内容(文段、表格、图片)
2)文档翻译:调用大模型API翻译:文段、表格
3)文档生成:将翻译后的内容回写生成新文档、输出下载
核心代码样例:

# 定义一个PDFTranslator类
class PDFTranslator:
    # 定义初始化函数,接收一个model_name参数
    def __init__(self, model: Model):
        # 创建一个model对象,用于执行翻译任务
        self.model = model
        # 创建一个PDFParser对象,用于解析PDF文件
        self.pdf_parser = PDFParser()
        # 创建一个Writer对象,用于写入文件
        self.writer = Writer()

    def translate_pdf(self, pdf_file_path: str, file_format: str = 'PDF', target_language: str = 'Chinese',
                      output_file_path: str = None, pages: Optional[int] = None):
        # 使用PDFParser对象解析指定的PDF文件,并将结果赋值给self.book
        self.book = self.pdf_parser.parse_pdf(pdf_file_path, pages)

        # 遍历self.book的每一页
        for page_idx, page in enumerate(self.book.pages):
            # 遍历每一页的每个内容
            for content_idx, content in enumerate(page.contents):
                #生成提示语
                prompt = self.model.translate_prompt(content, target_language)

                LOG.debug(prompt)
                translation, status = self.model.make_request(prompt)
                LOG.info(translation)

                # 更新self.document.pages中的内容
                content.apply_translated_paragraphs(translation)
                """
                用book对象存储翻译的结果
                """
                self.book.pages[page_idx].contents[content_idx].set_translation(translation, status)

        # 使用Writer对象保存翻译后的书籍,并返回保存的路径
        return self.writer.save_translated_book(self.book, output_file_path, file_format)


总结

1)Prompt工程是翻译质量的核心,要求开发者精通其构造与优化技巧;
2)LangChain的使用大幅简化了大型模型的集成和操作,极大提升了开发效率;
3)展望更多应用场景,例如基于大型模型重构的翻译应用、语音点餐系统、智能旅行助手、订票平台以及打车服务等,均有望在不久的将来得到实质性进展。

通过这个项目的实施,我们成功地实现了一个基于OpenAI智能翻译助手的实战落地工具。该工具不仅满足了市场对长篇文档翻译的需求,还具备高效、经济的特点,并且保证了数据的安全性。我们相信,随着技术的不断进步和应用场景的扩展,该工具将在未来得到更广泛的应用和发展。

👉实战系列篇
AI大模型探索之路-实战篇2:基于CVP架构-企业级知识库实战落地
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战

🔖更多专栏系列文章:AIGC-AI大模型探索之路

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。文章来源地址https://www.toymoban.com/news/detail-858479.html

到了这里,关于AI大模型探索之路-实战篇1:基于OpenAI智能翻译助手实战落地的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI大模型探索之路-认知篇3:大语言模型微调基础认知

    在人工智能的广阔研究领域内,大型预训练语言模型(Large Language Models, LLMs)已经成为推动技术革新的关键因素。这些模型通过在大规模数据集上的预训练过程获得了强大的语言理解和生成能力,使其能够在多种自然语言处理任务中表现出色。然而,由于预训练过程所产生的

    2024年04月24日
    浏览(46)
  • AI大模型探索之路-训练篇2:大语言模型预训练基础认知

    在人工智能的宏伟蓝图中,大语言模型(LLM)的预训练是构筑智慧之塔的基石。预训练过程通过调整庞大参数空间以吸纳数据中蕴含的知识,为模型赋予从语言理解到文本生成等多样化能力。本文将深入探讨预训练过程中的技术细节、所面临的挑战、通信机制、并行化策略以

    2024年04月25日
    浏览(46)
  • AI大模型探索之路-提升篇2:一文掌握AI大模型的核心-注意力机制

    目录 前言 一、注意力机制简介 二、注意力机制的工作原理 三、注意力机制的变体 1、自注意力(Self-Attention) 2、双向注意力(Bidirectional Attention) 3、多头注意力(Multi-Head Attention) ​4、无限注意力机制(Infini-attention) 四、注意力机制在自然语言理解中的应用 五、未来展

    2024年04月15日
    浏览(44)
  • AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化

    AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据集概览 在自然语言处理领域,大语言模型预训练数据准备是一个重

    2024年04月28日
    浏览(47)
  • AI大模型探索之路-应用篇17:GLM大模型-大数据自助查询平台架构实践

    在众多大型企业中,数据资产庞大无比,因此它们纷纷构建了多种大数据平台。然而,关键在于如何高效地利用这些数据,例如,将数据有效地提供给产品经理或数据分析师以供他们进行设计和分析。在传统工作流程中,由于这些角色通常不是技术专家,他们往往无法直接使

    2024年04月22日
    浏览(90)
  • AI大模型探索之路-应用篇16:GLM大模型-ChatGLM3 API开发实践

    目录 一、ChatGLM3-6B模型API调用 1. 导入相关的库 2. 加载tokenizer 3. 加载预训练模型 4. 实例化模型 5.调用模型并获取结果 二、OpenAI风格的代码调用 1. Openai api 启动 2. 使用curl命令测试返回 3. 使用Python发送POST请求测试返回 4. 采用GLM提供的chat对话方式 5. Embedding处理 三、Functio

    2024年04月23日
    浏览(45)
  • #风向标# 探索AI学习之路:从零基础到入门,详细揭秘人工智能的成长路径分享“

    1. 确定学习动机和兴趣 确定你学习AI的原因,是为了职业发展、解决现实问题还是满足兴趣爱好。明确动机可以帮助你更有目标地学习。 2. 学习基础数学知识 了解基础的数学概念,包括线性代数、概率统计等,这些是理解机器学习和深度学习原理的基础。 3. 学习编程语言

    2024年01月18日
    浏览(47)
  • AI大模型探索之路-应用篇2:Langchain框架ModelIO模块—数据交互的秘密武器

    目录 前言 一、概述 二、Model 三、Prompt 五、Output Parsers 总结 随着人工智能技术的不断进步,大模型的应用场景越来越广泛。LangChain框架作为一个创新的解决方案,专为处理大型语言模型的输入输出而设计。其中,Model IO(输入输出)模块扮演着至关重要的角色,负责构建和管

    2024年04月13日
    浏览(39)
  • AI大模型探索之路-基础篇2:掌握Chat Completions API的基础与应用

    OpenAI 大模型提供了一些强大的 API,方便用户与 OpenAI 的大语言模型进行交互。除了上篇中讲到的Embeddings中需要用到的embeddings接口,其核心接口主要是Completions 和Chat Completions接口。 自动文本补全、用于生成各类文本任务的模型,可以根据给定的提示(prompt)自动生成和补全文本

    2024年04月12日
    浏览(44)
  • 智能AI系统源码ChatGPT系统源码+详细搭建部署教程+AI绘画系统+已支持OpenAI GPT全模型+国内AI全模型

    SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统,支持 OpenAI GPT全模型+国内AI全模型 。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧!SparkA

    2024年02月07日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包