Python-VBA函数之旅-hash函数

这篇具有很好参考价值的文章主要介绍了Python-VBA函数之旅-hash函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、hash函数的定义:

二、hash函数的工作方式:

​三、hash函数的优缺点:

四、hash函数的常见应用场景:

1、hash函数:

1-1、Python:

1-2、VBA:

2、推荐阅读:

个人主页:https://blog.csdn.net/ygb_1024?spm=1010.2135.3001.5421 


Python-VBA函数之旅-hash函数,Myelsa的Python函数之旅,哈希算法,算法,python,开发语言,数据结构,leetcode


一、hash函数的定义:

        哈希函数(Hash Function)是一种将任意长度的数据(如字符串或数字)映射为固定长度数值(通常为较小的整数)的函数。这个固定长度的数值被称为哈希值哈希码。哈希函数的主要特点是它能够将不同的输入映射到不同的哈希值,并且对于相同的输入,哈希函数应该总是产生相同的哈希值。

哈希函数的设计通常满足以下性质:

1、确定性:对于相同的输入,哈希函数总是产生相同的输出。

2、高效性:哈希函数的计算应该相对快速,以便在实际应用中能够高效地处理大量数据。

3、雪崩效应:哈希函数的输出对输入的微小变化应该非常敏感,即输入的小变化应该导致哈希值的大变化。这有助于减少哈希冲突的可能性。

4、散列均匀性:哈希函数的输出应该尽可能均匀地分布在输出空间中,以减少哈希冲突的概率。

        哈希函数在多个领域有广泛应用,如数据查找(如哈希表)、数据完整性校验(如MD5或SHA-1用于文件校验和)、密码学(如加密哈希函数用于数字签名和消息认证)等。

        注意,哈希函数不是加密算法,它们是单向的,即不能从哈希值反推出原始输入数据。此外,由于哈希函数的设计特点和固定长度的输出,哈希冲突(不同输入产生相同哈希值)是不可避免的,但好的哈希函数会尽量减少这种冲突的发生。

Python-VBA函数之旅-hash函数,Myelsa的Python函数之旅,哈希算法,算法,python,开发语言,数据结构,leetcode

二、hash函数的工作方式:

        哈希函数的工作方式可以概括为以下几个步骤:

1、接收输入:哈希函数首先接收一个输入,这个输入可以是任意长度的数据,比如一个字符串、一个数字、或者一组数据。

2、执行哈希算法:接下来,哈希函数会对输入数据进行一系列复杂的数学运算和转换。这些运算和转换通常包括位操作、模运算、加法、乘法等,具体的运算方式取决于哈希函数的设计和实现。这些运算的目的是将输入数据转换成一个固定长度的数值,即哈希值。

3、生成哈希值:经过哈希算法的处理后,哈希函数会输出一个固定长度的哈希值。这个哈希值通常是一个较小的整数,其长度是预先确定的,不会因为输入数据的长度变化而变化。

4、保证唯一性和确定性:哈希函数的设计需要满足一些关键特性,如确定性、散列均匀性和雪崩效应。确定性意味着对于相同的输入,哈希函数总是产生相同的输出;散列均匀性要求哈希值尽可能均匀地分布在整个输出空间中,以减少哈希冲突的可能性;雪崩效应则要求输入数据的微小变化能够导致哈希值的显著变化。

        哈希函数的工作方式使得它能够在多个领域发挥重要作用。例如,在数据结构中,哈希函数可以将数据映射到哈希表的特定位置,从而实现快速的插入、查找和删除操作。在密码学中,哈希函数可以用于生成数据的唯一标识符,用于验证数据的完整性和未被篡改。此外,哈希函数还可以用于创建数字签名、实现消息认证等安全功能。

        注意,哈希函数是单向的,不能从哈希值反推出原始输入数据。这种单向性保证了哈希函数的安全性,使得它成为许多安全应用中的关键组件。

Python-VBA函数之旅-hash函数,Myelsa的Python函数之旅,哈希算法,算法,python,开发语言,数据结构,leetcode

三、hash函数的优缺点:

        哈希函数优点缺点主要体现在以下几个方面:

1、优点:

1-1、快速查找:哈希函数的主要优点是它们能够快速地定位到数据。通过将数据映射到唯一的哈希值,哈希函数允许我们以接近常量的时间复杂度(O(1))进行查找,这比线性搜索或二分搜索等算法要快得多。

1-2、空间效率高:哈希表通常能够以较小的空间存储大量的数据,因为哈希表不需要像数组那样预留连续的空间,也不需要像链表那样存储额外的指针。

1-3、灵活性:哈希函数可以用于各种类型的数据,不仅仅是数字或字符串。通过适当的哈希函数设计,我们可以为自定义的对象类型定义哈希值,从而将它们用作哈希表中的键。

2、缺点:

2-1、哈希冲突:虽然哈希函数设计得尽可能减少冲突,但冲突仍然可能发生。当两个不同的输入产生相同的哈希值时,就需要额外的机制(如链地址法或开放地址法)来处理这种冲突。这可能会增加查找和插入操作的复杂性。

2-2、敏感于输入变化:哈希函数对于输入的变化非常敏感。即使输入只有微小的变化,也可能导致哈希值发生很大的变化。这种敏感性在某些情况下是优点(如密码学哈希),但在其他情况下可能导致问题,因为相似的输入可能产生完全不同的哈希值。

2-3、不可逆性:哈希函数通常是单向的,即给定一个哈希值,很难(或不可能)找到原始输入。虽然这在某些场景下是优点(如密码存储),但在需要从哈希值恢复原始数据的场景下则成为缺点。

2-4、不适合排序:哈希表本身不保证元素的顺序,如果你需要按照某种顺序访问元素,那么哈希表可能不是最佳选择。

2-5、动态调整开销:当哈希表的大小需要动态调整(例如,当哈希表填满一定比例时)时,可能需要重新计算所有元素的哈希值并将它们移动到新的位置。这个过程可能会导致额外的开销。

        注意,哈希函数优点缺点会因具体应用场景和需求而异。在选择使用哈希函数或哈希表时,需要根据实际情况进行权衡和选择。

Python-VBA函数之旅-hash函数,Myelsa的Python函数之旅,哈希算法,算法,python,开发语言,数据结构,leetcode

四、hash函数的常见应用场景:

        hash函数在Python中具有广泛的应用场景,主要是因为哈希表(如Python中的字典)的广泛使用以及哈希在算法和数据结构中的基础作用。常见的应用场景有:

1、字典的实现:字典是Python中非常重要的数据结构,它允许我们存储键值对。字典的底层实现通常依赖于哈希表。当向字典中添加一个键值对时,Python会使用hash()函数计算键的哈希值,并基于这个哈希值在哈希表中查找或存储该键值对,这种基于哈希值的查找方式使得字典的查找、插入和删除操作都非常快。

2、集合的实现:集合也是Python中的一种数据结构,用于存储唯一元素的集合。集合也使用哈希表来实现其底层存储,因此元素的哈希值对于集合的操作(如添加、删除、查找)至关重要。

3、数据去重与指纹生成:哈希函数可以用于生成数据的唯一指纹,这在数据去重、文件比较和版本控制等场景中非常有用。通过对数据进行哈希处理,可以生成一个固定长度的哈希值,用于标识数据的唯一性。当需要比较两个数据时,只需比较它们的哈希值即可,无需逐字节比较原始数据,从而提高了比较效率。

4、快速查找:在需要快速查找的场景中,可以使用哈希表。例如,如果你有一个大型的数据集,并且需要频繁地查找其中的元素,那么将数据集转换为一个哈希表(如字典或集合)可以大大提高查找速度。

5、缓存机制:在缓存系统中,哈希函数常用于将缓存键映射到缓存存储位置。这样,当需要查找缓存项时,可以直接使用哈希值来快速定位。

6、数据完整性校验:虽然Python的hash()函数主要用于内部的数据结构操作,但类似的哈希函数(如MD5、SHA系列)常用于数据完整性校验。通过计算数据的哈希值,并在数据传输或存储后重新计算哈希值进行比较,可以检测数据是否在传输或存储过程中被篡改。

7、分布式系统:在分布式系统中,哈希函数可以用于数据分区和负载均衡。通过将数据的键进行哈希,并根据哈希值将数据分配到不同的节点或服务器上,可以实现数据的分布式存储和处理。

8、密码学应用:在密码学中,哈希函数具有广泛的应用,如密码存储、数字签名和消息认证等。通过将密码或消息通过哈希函数转换为一个固定长度的哈希值,可以隐藏原始数据的具体内容,同时保留数据的唯一性。这使得哈希函数在保护用户密码安全、验证数据完整性和身份认证等方面发挥重要作用。

9、哈希表优化:在构建自定义哈希表或优化现有哈希表时,可以深入研究哈希函数的选择和冲突解决策略。通过设计更好的哈希函数(如减少冲突、均匀分布哈希值等),可以提高哈希表的性能。此外,还可以探索不同的冲突解决策略,如链地址法、开放地址法等。

10、布隆过滤器:布隆过滤器是一种空间效率极高的概率型数据结构,它利用位数组和哈希函数来快速判断一个元素是否存在于集合中。通过多个哈希函数将元素映射到位数组的不同位置,并将这些位置设置为1,从而实现了高效的插入和查询操作。虽然布隆过滤器可能会产生误报(即错误地认为元素存在于集合中),但其空间占用和查询效率的优势使得它在许多场景下非常有用。

11、自定义哈希函数:在某些特殊应用场景下,可能需要自定义哈希函数来满足特定需求。例如,在处理具有特定模式或结构的数据时,可以根据数据的特性设计哈希函数以提高哈希的均匀性和效率。通过继承Python的hash类并实现`__hash__()`方法,可以创建自定义的哈希函数。

        注意,虽然哈希函数在某些场景下非常有用,但它们并不是安全的加密机制。哈希函数的设计目标是快速计算且冲突率低,而不是保证输出不可预测或防止逆向工程。因此,对于需要高度安全性的场景(如密码存储),应该使用专门的加密哈希函数(如bcrypt、Argon2等)

Python-VBA函数之旅-hash函数,Myelsa的Python函数之旅,哈希算法,算法,python,开发语言,数据结构,leetcode

1、hash函数:
1-1、Python:
# 1.函数:hash
# 2.功能:用于获取对象的哈希值
# 3.语法:hash(object)
# 4.参数:object,必须,一个不可变对象
# 5.返回值:返回对象的哈希值(若有的话)
# 6.说明:只有不可变对象,才有哈希值
# 7.示例:
# 应用1:字典的实现
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __hash__(self):
        # 使用内置的hash函数对name和age进行哈希,并将结果组合起来
        # 注意:为了避免哈希冲突,通常建议使用更复杂的方法,这里仅为示例
        return hash((self.name, self.age))
    def __eq__(self, other):
        # 当两个Person对象具有相同的name和age时,它们被认为是相等的
        if isinstance(other, Person):
            return self.name == other.name and self.age == other.age
        return False
# 创建Person对象并使用它们作为字典的键
people = {
    Person("Myelsa", 18): "Myelsa's info",
    Person("Jimmy", 15): "Jimmy's info"
}
# 根据Person对象获取字典中的值
alice = Person("Myelsa", 18)
print(people[alice])
# Myelsa's info

# 应用2:集合的实现
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __hash__(self):
        # 使用内置的hash函数对name和age进行哈希,并将结果组合起来
        # 注意:这里仅使用简单的元组哈希,实际中可能需要更复杂的哈希策略
        return hash((self.name, self.age))
    def __eq__(self, other):
        # 当两个Person对象具有相同的name和age时,它们被认为是相等的
        if isinstance(other, Person):
            return self.name == other.name and self.age == other.age
        return False
# 创建Person对象并使用它们作为集合的元素
people = {Person("Myelsa", 18), Person("Jimmy", 15)}
# 尝试添加一个已经存在的Person对象到集合中,它不会被添加(因为是重复的)
existing_person = Person("Myelsa", 18)
people.add(existing_person)  # 这个操作实际上不会改变集合,因为Myelsa已经在里面了
# 打印集合中的元素数量,它应该仍然是2,因为Myelsa只被计算了一次
print(len(people))
# 检查一个Person对象是否在集合中
alice = Person("Myelsa", 18)
print(alice in people)
# 2
# True

# 应用3:数据去重与指纹生成
# 接受字符串信息,返回哈希值
import hashlib
def simple_hash(data: str) -> str:
    """
    计算字符串的哈希值
    """
    # 创建一个哈希对象
    hasher = hashlib.sha256()
    # 提供数据给哈希对象
    hasher.update(data.encode('utf-8'))
    # 获取十六进制哈希值
    return hasher.hexdigest()
# 使用示例
data = "Hello, Python!"
hash_value = simple_hash(data)
print(f"Hash of '{data}': {hash_value}")
# Hash of 'Hello, Python!': 1c68755fc075a6bb08a82e80a5f1d3c8a8d40086a73cd8195ec7c43a7554f188

# 列表去重复项
def remove_duplicates_with_hash(data_list: list) -> list:
    """
    使用哈希值去除列表中的重复项
    """
    # 创建一个集合来存储唯一的哈希值
    unique_hashes = set()
    # 创建一个列表来存储去重后的数据
    unique_data = []
    for item in data_list:
        hash_value = simple_hash(item)
        # 如果哈希值不在集合中,说明这是唯一的项
        if hash_value not in unique_hashes:
            unique_hashes.add(hash_value)
            unique_data.append(item)
    return unique_data
# 使用示例
data_list = ["apple", "banana", "apple", "cherry", "banana"]
unique_data_list = remove_duplicates_with_hash(data_list)
print(f"Unique data list: {unique_data_list}")
# Unique data list: ['apple', 'banana', 'cherry']

# 应用4:快速查找
# 创建一个字典用于存储学生信息,学生ID作为键,学生姓名作为值
students = {
    '1001': 'Myelsa',
    '1002': 'Bruce',
    '1003': 'Jimmy',
    # ... 可以添加更多学生信息
}
# 定义一个函数用于通过学生ID查找学生姓名
def find_student_by_id(student_id, students_dict):
    return students_dict.get(student_id)
# 示例:查找ID为1002的学生姓名
student_id = '1002'
student_name = find_student_by_id(student_id, students)
if student_name:
    print(f"Student with ID {student_id} is {student_name}")
else:
    print(f"No student found with ID {student_id}")
# 如果需要添加新的学生信息,可以直接对字典进行操作
new_student_id = '1004'
new_student_name = 'Mark'
students[new_student_id] = new_student_name
# 再次查找新添加的学生
student_name = find_student_by_id(new_student_id, students)
if student_name:
    print(f"Newly added student with ID {new_student_id} is {student_name}")
# Student with ID 1002 is Bruce
# Newly added student with ID 1004 is Mark

# 应用5:缓存机制
import hashlib
# 缓存类,使用字典存储缓存数据
class Cache:
    def __init__(self):
        self.cache = {}
    # 生成缓存键的哈希函数
    def generate_cache_key(self, *args):
        # 将参数转换为字符串,并使用哈希算法生成哈希值
        key_str = '_'.join(str(arg) for arg in args)
        hasher = hashlib.sha256()
        hasher.update(key_str.encode('utf-8'))
        return hasher.hexdigest()
    # 缓存数据
    def cache_data(self, key, value):
        self.cache[key] = value
    # 获取缓存数据
    def get_cached_data(self, *args):
        key = self.generate_cache_key(*args)
        return self.cache.get(key)
# 使用示例
cache = Cache()
# 缓存一些数据
cache.cache_data(cache.generate_cache_key('key1'), 'value1')
cache.cache_data(cache.generate_cache_key('key2', 123), 'value2')
# 获取缓存数据
print(cache.get_cached_data('key1'))
print(cache.get_cached_data('key2', 123))
# 尝试获取不存在的缓存数据
print(cache.get_cached_data('nonexistent_key'))
# value1
# value2
# None

# 应用6:数据完整性校验
import hashlib
import os
# 定义一个函数来计算文件的哈希值
def calculate_file_hash(file_path, hash_algorithm='sha256'):
    """
    计算文件的哈希值用于数据完整性校验
    :param file_path: 文件的路径
    :param hash_algorithm: 哈希算法的名称,默认为'sha256'
    :return: 文件的哈希值
    """
    # 创建一个哈希对象
    hasher = hashlib.new(hash_algorithm)
    # 打开文件并逐块读取数据,更新哈希对象
    with open(file_path, 'rb') as file:
        while True:
            chunk = file.read(4096)  # 读取4096字节的数据块
            if not chunk:
                break
            hasher.update(chunk)
            # 获取十六进制哈希值
    return hasher.hexdigest()
# 使用示例
file_path = 'file.txt'  # 替换为你的文件路径
file_hash = calculate_file_hash(file_path)
print(f"The hash of '{file_path}' is: {file_hash}")
# 你可以将这个哈希值保存下来,然后在需要校验的时候重新计算文件的哈希值,并进行比较
# 如果两个哈希值相同,那么数据就是完整的;如果不同,那么数据可能在传输或存储过程中被篡改
# The hash of 'file.txt' is: 0ffe1abd1a08215353c233d6e009613e95eec4253832a761af28ff37ac5a150c

# 应用7:分布式系统
import hashlib
# 假设我们有四个节点
NUM_NODES = 4
# 哈希函数,将键转换为0到NUM_NODES-1之间的数字
def hash_key_to_node(key):
    # 使用md5哈希算法,将键转换为哈希值
    m = hashlib.md5()
    m.update(key.encode('utf-8'))
    # 取哈希值的最后几位,并转换为整数
    node_id = int(m.hexdigest(), 16) % NUM_NODES
    return node_id
# 模拟一些数据键
keys = ['3', '5', '6', '8', '10', '11', '24']
# 分配数据到节点
node_assignments = {}
for key in keys:
    node_id = hash_key_to_node(key)
    if node_id not in node_assignments:
        node_assignments[node_id] = []
    node_assignments[node_id].append(key)
# 打印每个节点的数据分配情况
for node_id, keys_assigned in node_assignments.items():
    print(f"Node {node_id}: {keys_assigned}")
# Node 3: ['3', '24']
# Node 1: ['5', '8']
# Node 0: ['6', '10']
# Node 2: ['11']

# 应用8:密码学应用
import hashlib
import os
# 哈希密码的函数
def hash_password(password, salt=None):
    if salt is None:
        salt = os.urandom(16)  # 生成一个随机的盐值
    # 将密码和盐值拼接起来
    password_salt = password + salt.hex()
    # 创建SHA-256哈希对象
    hasher = hashlib.sha256()
    # 更新哈希对象
    hasher.update(password_salt.encode('utf-8'))
    # 获取哈希摘要的十六进制表示
    hashed_password = hasher.hexdigest()
    # 返回哈希值和盐值,通常将它们一起存储
    return hashed_password, salt
# 使用示例
password = 'my_secret_password'
hashed_pwd, salt = hash_password(password)
print(f"Hashed Password: {hashed_pwd}")
print(f"Salt: {salt.hex()}")
# 验证密码
def verify_password(provided_password, stored_hashed_password, stored_salt):
    hashed_pwd, _ = hash_password(provided_password, stored_salt)
    return hashed_pwd == stored_hashed_password
# 假设这是从数据库或其他存储中检索的存储哈希值和盐值
stored_hashed_password = hashed_pwd
stored_salt = salt
# 用户提供的密码进行验证
provided_password = input("Enter your password: ")
if verify_password(provided_password, stored_hashed_password, stored_salt):
    print("Password is correct!")
else:
    print("Password is incorrect!")
# Hashed Password: 0fa70b9fe5516f543e28ab8d97e1e38e04594b7fd74331a0a25723552e437f20
# Salt: 7301e12e361696eb7ae3272c05cb0569
# Enter your password: 123
# Password is incorrect!

# 应用9:哈希表优化
class HashTable:
    def __init__(self, size):
        self.size = size
        self.table = [[] for _ in range(size)]
    # 简单的哈希函数,使用取模运算
    def hash_function(self, key):
        return key % self.size
    # 处理哈希冲突的方法:链地址法
    def insert(self, key, value):
        hash_key = self.hash_function(key)
        bucket = self.table[hash_key]
        for pair in bucket:
            if pair[0] == key:
                pair[1] = value  # 更新值
                return
        bucket.append([key, value])  # 添加新键值对
    def get(self, key):
        hash_key = self.hash_function(key)
        bucket = self.table[hash_key]
        for pair in bucket:
            if pair[0] == key:
                return pair[1]
        return None
# 使用示例
hash_table = HashTable(10)
hash_table.insert(1, 'apple')
hash_table.insert(11, 'banana')
hash_table.insert(21, 'cherry')
hash_table.insert(31, 'date')
hash_table.insert(41, 'elderberry')
print(hash_table.get(11))
print(hash_table.get(21))
# banana
# cherry

# 应用10:布隆过滤器
import mmh3
import bitarray
class BloomFilter:
    def __init__(self, size, hash_count):
        """
        初始化布隆过滤器
        :param size: 位数组的大小
        :param hash_count: 要使用的哈希函数数量
        """
        self.size = size
        self.hash_count = hash_count
        self.bit_array = bitarray.bitarray(size)
        self.bit_array.setall(0)  # 初始化所有位为0
        self.hashes = [self._get_hash_function(i) for i in range(hash_count)]
    def _get_hash_function(self, seed):
        """
        生成哈希函数,这里使用mmh3库的不同种子来模拟多个哈希函数
        :param seed: 哈希函数的种子
        :return: 哈希函数
        """
        def hash_function(data):
            return mmh3.hash(data, seed) % self.size
        return hash_function
    def add(self, item):
        """
        向布隆过滤器中添加元素
        :param item: 要添加的元素
        """
        for hash_func in self.hashes:
            index = hash_func(item)
            self.bit_array[index] = 1
    def might_contain(self, item):
        """
        检查布隆过滤器是否可能包含某个元素
        注意:这里只能返回“可能包含”,因为布隆过滤器存在误报的可能性
        :param item: 要检查的元素
        :return: 如果可能包含则返回True,否则返回False
        """
        for hash_func in self.hashes:
            index = hash_func(item)
            if self.bit_array[index] == 0:
                return False
        return True
# 使用示例
if __name__ == "__main__":
    # 创建一个大小为1000000,使用3个哈希函数的布隆过滤器
    bf = BloomFilter(size=1000000, hash_count=3)
    # 添加一些元素到布隆过滤器中
    bf.add("apple")
    bf.add("banana")
    bf.add("cherry")
    # 检查元素是否可能存在于布隆过滤器中
    print(bf.might_contain("apple"))  # 应该返回True
    print(bf.might_contain("date"))  # 可能返回True(误报),也可能返回False,取决于哈希碰撞情况
# True
# False

# 应用11:自定义哈希函数
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    # 自定义哈希函数
    def __hash__(self):
        # 使用元组的哈希值作为基础,因为元组是不可变的,并且有自己的哈希实现
        return hash((self.name, self.age))
    # 为了使对象可哈希,还需要定义 __eq__ 方法
    def __eq__(self, other):
        if not isinstance(other, Person):
            return False
        return self.name == other.name and self.age == other.age
# 创建Person对象
person1 = Person("Alice", 30)
person2 = Person("Bob", 25)
person3 = Person("Alice", 30)  # 与person1相同
# 将对象添加到集合中,集合要求元素是可哈希的
people_set = {person1, person2}
# 检查person3是否“可能”在集合中
# 注意:由于哈希冲突的可能性,这只是一个快速的检查,不一定准确
# 要准确检查,还需要使用 __eq__ 方法进行比较
print(person3 in people_set)  # 输出: True,因为person3和person1在内容上相等
# 使用字典,字典的键也必须是可哈希的
people_dict = {person1: "Office A", person2: "Office B"}
print(people_dict[person1])  # 输出: Office A
# True
# Office A
1-2、VBA:
略,待后补。
2、推荐阅读:

1、Python-VBA函数之旅-float()函数

Python算法之旅:Algorithm

Python函数之旅:Functions 文章来源地址https://www.toymoban.com/news/detail-858531.html

个人主页:神奇夜光杯-CSDN博客 

到了这里,关于Python-VBA函数之旅-hash函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python-VBA函数之旅-iter函数

    目录 一、iter函数的常见应用场景: 二、iter函数使用注意事项: 三、如何用好iter函数? 1、iter函数: 1-1、Python: 1-2、VBA: 2、推荐阅读: 个人主页:神奇夜光杯-CSDN博客  一、iter函数的常见应用场景:         在Python中, iter()函数 具有广泛的应用场景,主要用于 创建

    2024年04月27日
    浏览(28)
  • Python-VBA函数之旅-chr函数

    目录 1、chr函数: 1-1、Python: 1-2、VBA: 2、相关文章: 个人主页:非风V非雨-CSDN博客 ​​​​​​​          chr函数 在Python编程中有多种应用场景,它主要用于 将Unicode码点转换为对应的字符 。常见的应用场景有: 1、字符(串)处理: chr函数可以将Unicode编码转换为对应

    2024年04月15日
    浏览(46)
  • Python-VBA函数之旅-id函数

    目录 一、id函数的常见应用场景: 二、id函数使用注意事项: 1、id函数: 1-1、Python: 1-2、VBA: 2、推荐阅读: 个人主页:神奇夜光杯-CSDN博客  一、id函数的常见应用场景:         id函数 在Python中有一些实际应用场景,尽管它在日常编程中并不常用,常见的应用场景有

    2024年04月26日
    浏览(49)
  • Python-VBA函数之旅-exec函数

    目录 一、exec函数的常见应用场景: 二、exec函数安全使用注意事项: 三、exec函数与eval函数对比分析: 1、exec函数: 1-1、Python: 1-2、VBA: 2、相关文章: 个人主页:神奇夜光杯-CSDN博客  一、exec函数的常见应用场景:         exec函数 在Python中有多种实际应用场景,尽管

    2024年04月25日
    浏览(37)
  • Hash(哈希)算法-Python实现

    哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的

    2023年04月15日
    浏览(36)
  • Python-VBA编程500例-033(入门级)

    目录 1、角色定位: 1-1、Python: 1-2、VBA: 2、相关文章: Python算法之旅:Myelsa的Python算法之旅(高铁直达)-CSDN博客 个人主页:非风V非雨-CSDN博客 欢迎志同道合者一起交流学习,我的QQ:94509325/微信         角色定位 ( Role Positioning )在编程中的实际应用场景主要体现在以下几

    2024年04月26日
    浏览(28)
  • Python-VBA编程500例-029(入门级)

    目录 1、连续字符段索引: 1-1、Python: 1-2、VBA: 2、相关文章: Python算法之旅:Myelsa的Python算法之旅(高铁直达)-CSDN博客 个人主页:非风V非雨-CSDN博客 欢迎志同道合者一起交流学习,我的QQ:94509325/微信         连续字符段索引 ( Index of Consecutive Character Segments )在实际应用

    2024年04月13日
    浏览(31)
  • OpenCV每日函数 了解不同的图像哈希函数、以及OpenCV的img_hash哈希模块

            图像哈希是 使用算法为图像分配唯一哈希值的过程 。图像的副本都具有完全相同的哈希值。因此,它有时被称为“数字指纹”。         在深度学习普及之前,一些搜索引擎使用散列技术来索引图像。这就需要一个哈希函数,对于文件的微小更改,该函数会

    2024年02月11日
    浏览(52)
  • 哈希算法(hash)加密解密

    套路一样 hash_jiemi.py

    2024年02月13日
    浏览(44)
  • 数据结构与算法 | 哈希表(Hash Table)

    在二分搜索中提到了在有序集合中查询某个特定元素的时候,通过折半的方式进行搜索是一种很高效的算法。那能否根据特征直接定位元素,而非折半去查找?哈希表(Hash Table),也称为散列表,就是一种数据结构,用于实现键-值对的映射关系。它通过将键映射到特定的值

    2024年02月06日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包