1 分块矩阵的定义
将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子快,以子块为元素的形式上的矩阵称为分块矩阵。
2 分块矩阵的运算(性质)
-
设矩阵A与B的行数相同,列数相同,采用相同的分块法,有
A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , B = ( B 11 ⋯ B 1 r ⋮ ⋮ B s 1 ⋯ B s r ) A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,B=\begin{pmatrix} B_{11}&\cdots&B_{1r}\\ \vdots&&\vdots\\ B_{s1}&\cdots&B_{sr} \end{pmatrix}\\ A= A11⋮As1⋯⋯A1r⋮Asr ,B= B11⋮Bs1⋯⋯B1r⋮Bsr
其中 A i j 与 B i j A_{ij}与B_{ij} Aij与Bij行数相同,列数相同,那么
A + B = ( A 11 + B 11 ⋯ A 1 r + B 1 r ⋮ ⋮ A s 1 + B s 1 ⋯ A s r + B s r ) A+B=\begin{pmatrix} A_{11}+B_{11}&\cdots&A_{1r}+B_{1r}\\ \vdots&&\vdots\\ A_{s1}+B_{s1}&\cdots&A_{sr}+B_{sr} \end{pmatrix} A+B= A11+B11⋮As1+Bs1⋯⋯A1r+B1r⋮Asr+Bsr -
设
A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , λ 为数,那么 A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,\lambda为数,那么 A= A11⋮As1⋯⋯A1r⋮Asr ,λ为数,那么λ A = ( λ A 11 ⋯ λ A 1 r ⋮ ⋮ λ A s 1 ⋯ λ A s r ) \lambda A=\begin{pmatrix} \lambda A_{11}&\cdots&\lambda A_{1r}\\ \vdots&&\vdots\\ \lambda A_{s1}&\cdots&\lambda A_{sr} \end{pmatrix} λA= λA11⋮λAs1⋯⋯λA1r⋮λAsr
-
设A位 m × l m\times l m×l矩阵,B位 l × n l\times n l×n矩阵,分块成
A = ( A 11 ⋯ A 1 t ⋮ ⋮ A s 1 ⋯ A s t ) , B = ( A 11 ⋯ A 1 r ⋮ ⋮ A t 1 ⋯ A t r ) A=\begin{pmatrix} A_{11}&\cdots&A_{1t}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{st} \end{pmatrix} ,B=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{t1}&\cdots&A_{tr} \end{pmatrix} A= A11⋮As1⋯⋯A1t⋮Ast ,B= A11⋮At1⋯⋯A1r⋮Atr
其中 A i 1 , A i 2 , ⋯ , A i t A_{i1},A_{i2},\cdots,A_{it} Ai1,Ai2,⋯,Ait的列数分别等于 B 1 j , B 2 j , ⋯ , B t j B_{1j},B_{2j},\cdots,B_{tj} B1j,B2j,⋯,Btj的行数,那么
A B = ( C 11 ⋯ C 1 r ⋮ ⋮ C s 1 ⋯ C s r ) AB=\begin{pmatrix} C_{11}&\cdots&C_{1r}\\ \vdots&&\vdots\\ C_{s1}&\cdots&C_{sr} \end{pmatrix} AB= C11⋮Cs1⋯⋯C1r⋮Csr
其中
C i j = ∑ k = 1 t A i k B k j ( i = 1 , ⋯ , s ; j = 1 , ⋯ , r ) C_{ij}=\sum_{k=1}^tA_{ik}B_{kj}(i=1,\cdots,s;j=1,\cdots,r) Cij=k=1∑tAikBkj(i=1,⋯,s;j=1,⋯,r) -
设
A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) ,则 A T = ( A 11 T ⋯ A s 1 T ⋮ ⋮ A 1 r T ⋯ A s r T ) A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,则A^T=\begin{pmatrix} A_{11}^T&\cdots&A_{s1}^T\\ \vdots&&\vdots\\ A_{1r}^T&\cdots&A_{sr}^T \end{pmatrix} A= A11⋮As1⋯⋯A1r⋮Asr ,则AT= A11T⋮A1rT⋯⋯As1T⋮AsrT -
设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即
A = ( A 1 O A 2 ⋱ O A s ) A=\begin{pmatrix} A_{1}&&&O\\ &A_2&&\\ &&\ddots&\\ O&&&A_s \end{pmatrix} A= A1OA2⋱OAs
其中 A i ( i = 1 , 2 , ⋯ , s ) A_i(i=1,2,\cdots,s) Ai(i=1,2,⋯,s)都方阵,那么称A为分块对角矩阵。分块对角矩阵的行列式有以下性质
∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A s ∣ |A|=|A_1||A_2|\cdots |A_s| ∣A∣=∣A1∣∣A2∣⋯∣As∣
由此性质可知,若 ∣ A i ∣ ≠ 0 ( i = i , 2 , ⋯ , s ) |A_i|\not=0(i=i,2,\cdots,s) ∣Ai∣=0(i=i,2,⋯,s),则 ∣ A ∣ ≠ 0 |A|\not=0 ∣A∣=0,并有
A − 1 = ( A 1 − 1 O A 2 − 1 ⋱ O A s − 1 ) A^{-1}=\begin{pmatrix} A_{1}^{-1}&&&O\\ &A_2^{-1}&&\\ &&\ddots&\\ O&&&A_s^{-1} \end{pmatrix} A−1= A1−1OA2−1⋱OAs−1
例18 设
A = ( 5 0 0 0 3 1 0 2 1 ) ,求 A − 1 A=\begin{pmatrix} 5&0&0\\ 0&3&1\\ 0&2&1 \end{pmatrix} ,求A^{-1} A= 500032011 ,求A−1KaTeX parse error: Undefined control sequence: \vline at position 24: …gin{pmatrix} 5&\̲v̲l̲i̲n̲e̲0&0\\ \hdashlin…
3 按列分块与按行分块
m
×
n
m\times n
m×n矩阵A有n列,称为矩阵A的n个列向量,若第j列记作
a
j
=
(
a
1
j
a
2
j
⋮
a
m
j
)
a_j=\begin{pmatrix} a_{1j}\\ a_{2j}\\ \vdots\\ a_{mj} \end{pmatrix}
aj=
a1ja2j⋮amj
则A可按列分块位
A
=
(
a
1
,
a
2
,
⋯
,
a
n
)
A=(a_1,a_2,\cdots,a_n)
A=(a1,a2,⋯,an)
m
×
n
m\times n
m×n矩阵A有m行,称为矩阵A的m个行向量,若第
i
i
i行记作
α
i
T
=
(
a
i
1
,
a
i
2
,
⋯
,
a
i
n
)
\alpha_i^T=(a_{i1},a_{i2},\cdots,a_{in})
αiT=(ai1,ai2,⋯,ain)
则A可按行分开为
A
=
(
α
1
T
α
2
T
⋮
α
m
T
)
A=\begin{pmatrix} \alpha_1^T\\ \alpha_2^T\\ \vdots\\ \alpha_m^T \end{pmatrix}
A=
α1Tα2T⋮αmT
对于矩阵
A
=
(
a
i
j
)
m
×
s
A=(a_{ij})_{m\times s}
A=(aij)m×s与矩阵
B
=
(
b
i
j
)
s
×
n
B=(b_{ij})_{s\times n}
B=(bij)s×n的乘积矩阵
A
B
=
C
=
(
c
i
j
)
m
×
n
AB=C=(c_{ij})_{m\times n}
AB=C=(cij)m×n,若把A按行分成m快,把B案列分成n快,便有
A
B
=
(
α
1
T
α
2
T
⋮
α
m
T
)
(
b
1
,
b
2
,
⋯
,
b
n
)
=
(
α
1
T
b
1
α
1
T
b
2
⋯
α
1
T
b
n
α
2
T
b
1
α
2
T
b
2
⋯
α
2
T
b
n
⋮
⋮
⋮
α
m
T
b
1
α
m
T
b
2
⋯
α
m
T
b
n
)
AB=\begin{pmatrix} \alpha_1^T\\ \alpha_2^T\\ \vdots\\ \alpha_m^T \end{pmatrix} \begin{pmatrix} b_1,b_2,\cdots,b_n\\ \end{pmatrix}\\ =\begin{pmatrix} \alpha_1^Tb_1&\alpha_1^Tb_2&\cdots&\alpha_1^Tb_n\\ \alpha_2^Tb_1&\alpha_2^Tb_2&\cdots&\alpha_2^Tb_n\\ \vdots&\vdots&&\vdots\\ \alpha_m^Tb_1&\alpha_m^Tb_2&\cdots&\alpha_m^Tb_n\\ \end{pmatrix}
AB=
α1Tα2T⋮αmT
(b1,b2,⋯,bn)=
α1Tb1α2Tb1⋮αmTb1α1Tb2α2Tb2⋮αmTb2⋯⋯⋯α1Tbnα2Tbn⋮αmTbn
其中
c
i
j
=
α
i
T
b
j
=
(
a
i
1
,
a
i
2
,
⋯
,
a
i
s
)
(
b
1
j
b
2
j
⋮
b
s
j
)
=
∑
k
=
1
s
a
i
k
b
k
j
c_{ij}=\alpha_i^Tb_j=(a_{i1},a_{i2},\cdots,a_{is}) \begin{pmatrix} b_{1j}\\ b_{2j}\\ \vdots\\ b_{sj} \end{pmatrix} =\sum_{k=1}^sa_{ik}b_{kj}
cij=αiTbj=(ai1,ai2,⋯,ais)
b1jb2j⋮bsj
=k=1∑saikbkj
例19 证明矩阵
A
=
O
A=O
A=O的充分必要条件是方阵
A
T
A
=
O
A^TA=O
ATA=O
证明:条件的必要性是显然的
充分性
设
A
=
(
a
i
j
)
m
×
n
,把
A
按列分块位
A
=
(
a
1
,
a
2
,
⋯
,
a
n
)
,则
A
T
A
=
(
a
1
T
a
2
T
⋮
a
n
T
)
(
a
1
,
a
2
,
⋯
,
a
n
)
=
(
a
1
T
a
1
a
1
T
a
2
⋯
a
1
T
a
n
a
2
T
a
1
a
2
T
a
2
⋯
a
2
T
a
n
⋮
⋮
⋮
a
n
T
a
1
a
n
T
a
2
⋯
a
n
T
a
n
)
即
A
T
A
的
(
i
,
j
)
元为
a
i
T
a
j
因
A
T
A
=
O
,故
a
i
T
a
j
=
0
(
i
,
j
=
1
,
2
,
⋯
,
n
)
特殊的,有
a
j
T
a
j
=
0
(
j
=
1
,
2
,
⋯
,
n
)
而
a
j
T
a
j
=
(
a
1
j
,
a
2
j
,
⋯
,
a
m
j
)
(
a
1
j
a
2
j
⋮
a
m
j
)
=
a
1
j
2
+
a
2
j
2
+
⋯
+
a
m
j
2
=
0
,
得
a
1
j
=
a
2
j
=
⋯
=
a
m
j
=
0
即
A
=
O
证明:条件的必要性是显然的\\ 充分性\\ 设A=(a_{ij})_{m\times n},把A按列分块位A=(a_1,a_2,\cdots,a_n),则\\ A^TA=\begin{pmatrix} a_1^T\\ a_2^T\\ \vdots\\ a_n^T \end{pmatrix} (a_1,a_2,\cdots,a_n)\\ =\begin{pmatrix} a_1^Ta_1&a_1^Ta_2&\cdots&a_1^Ta_n\\ a_2^Ta_1&a_2^Ta_2&\cdots&a_2^Ta_n\\ \vdots&\vdots&&\vdots\\ a_n^Ta_1&a_n^Ta_2&\cdots&a_n^Ta_n\\ \end{pmatrix}\\ 即A^TA的(i,j)元为a_i^Ta_j 因A^TA=O,故\\ a_i^Ta_j=0(i,j=1,2,\cdots,n) 特殊的,有\\ a_j^Ta_j=0(j=1,2,\cdots,n)\\ 而 a_j^Ta_j=(a_{1j},a_{2j},\cdots,a_{mj}) \begin{pmatrix} a_{1j}\\ a_{2j}\\ \vdots\\ a_{mj} \end{pmatrix} =a_{1j}^2+a_{2j}^2+\cdots+a_{mj}^2=0,得\\ a_{1j}=a_{2j}=\cdots=a_{mj}=0\\ 即 A=O
证明:条件的必要性是显然的充分性设A=(aij)m×n,把A按列分块位A=(a1,a2,⋯,an),则ATA=
a1Ta2T⋮anT
(a1,a2,⋯,an)=
a1Ta1a2Ta1⋮anTa1a1Ta2a2Ta2⋮anTa2⋯⋯⋯a1Tana2Tan⋮anTan
即ATA的(i,j)元为aiTaj因ATA=O,故aiTaj=0(i,j=1,2,⋯,n)特殊的,有ajTaj=0(j=1,2,⋯,n)而ajTaj=(a1j,a2j,⋯,amj)
a1ja2j⋮amj
=a1j2+a2j2+⋯+amj2=0,得a1j=a2j=⋯=amj=0即A=O
线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
,
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
,
⋯
⋯
⋯
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
=
b
m
,
\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\cdots\cdots\cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases}
⎩
⎨
⎧a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯⋯⋯⋯am1x1+am2x2+⋯+amnxn=bm,
它的矩阵乘积形式为
A
m
×
n
x
n
×
1
=
b
m
×
1
A_{m\times n}x_{n\times 1}=b_{m\times 1}
Am×nxn×1=bm×1
上式中,把A案列分块,把x按行分块,有分块矩阵的乘法有
(
a
1
,
a
2
,
⋯
,
a
n
)
(
x
1
,
x
2
,
⋮
x
n
)
=
b
,
即
x
1
a
1
+
x
2
a
2
+
⋯
+
x
n
a
n
=
b
(a_1,a_2,\cdots,a_n) \begin{pmatrix} x_1,\\ x_2,\\ \vdots\\ x_n \end{pmatrix} =b,即\\ x_1a_1+x_2a_2+\cdots+x_na_n=b
(a1,a2,⋯,an)
x1,x2,⋮xn
=b,即x1a1+x2a2+⋯+xnan=b
其实方程组表成
(
a
11
a
21
⋮
a
m
1
)
x
1
+
(
a
12
a
22
⋮
a
m
2
)
x
2
+
⋯
(
a
1
n
a
2
n
⋮
a
m
n
)
x
n
=
(
b
1
b
2
⋮
b
m
)
\begin{pmatrix} a_{11}\\ a_{21}\\ \vdots\\ a_{m1} \end{pmatrix}x_1 +\begin{pmatrix} a_{12}\\ a_{22}\\ \vdots\\ a_{m2} \end{pmatrix}x_2 +\cdots \begin{pmatrix} a_{1n}\\ a_{2n}\\ \vdots\\ a_{mn} \end{pmatrix}x_n =\begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_m \end{pmatrix}
a11a21⋮am1
x1+
a12a22⋮am2
x2+⋯
a1na2n⋮amn
xn=
b1b2⋮bm
结语
❓QQ:806797785
⭐️文档笔记地址 https://github.com/gaogzhen/math
参考:
[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p46-52.文章来源:https://www.toymoban.com/news/detail-858724.html
[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p12.文章来源地址https://www.toymoban.com/news/detail-858724.html
到了这里,关于0205矩阵分块法-矩阵及其运算-线性代数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!