<基础数学> 平面向量基本定理

这篇具有很好参考价值的文章主要介绍了<基础数学> 平面向量基本定理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

平面向量基本定理

  1. 向量平行
    a ⃗ / / b ⃗ ( b ⃗ ≠ 0 ⃗ )的充要条件是 \vec{a} // \vec{b}( \vec{b}\neq \vec{0})的充要条件是 a //b b =0 )的充要条件是 x 1 y 2 − y 1 x 2 = 0 x_1y_2-y_1x_2=0 x1y2y1x2=0
  2. 向量垂直
    a ⃗ ⊥ b ⃗ ⇔ a ⃗ ⋅ b ⃗ = 0 , \vec{a} \bot \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0, a b a b =0 即 x 1 x 2 + y 1 y 2 = 0 即x_1x_2+y_1y_2=0 x1x2+y1y2=0
  3. 向量角度
    c o s θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ = x 1 x 2 + y 1 y 2 ( x 1 ) 2 + ( y 1 ) 2 + ( x 2 ) 2 + ( y 2 ) 2 cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{x_1x_2+y_1y_2}{\sqrt{(x_1)^2+(y_1)^2}+\sqrt{(x_2)^2+(y_2)^2}} cosθ=a ∣∣b a b =(x1)2+(y1)2 +(x2)2+(y2)2 x1x2+y1y2
  4. 向量同向和反向
    当 a ⃗ 与 b ⃗ 同向时, a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}同向时,\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|; a b 同向时,a b =a ∣∣b
    当 a ⃗ 与 b ⃗ 反向时, a ⃗ ⋅ b ⃗ = − ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}反向时,\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|; a b 反向时,a b =a ∣∣b

文章来源地址https://www.toymoban.com/news/detail-858753.html

到了这里,关于<基础数学> 平面向量基本定理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 陶哲轩必备助手之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2]矩阵乘积的行列式变形(下篇)

    视频链接,求个赞哦: 陶哲轩必备助手之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2]矩阵乘积的行列式变形(下篇)_哔哩哔哩_bilibili import Mathlib.LinearAlgebra.Matrix.Determinant import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Data.Real.Sqrt import Mathlib.Data.Li

    2024年01月23日
    浏览(50)
  • 陶哲轩必备助手之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2]矩阵乘积的行列式变形(上篇)

    视频链接: 陶哲轩必备助手之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2]矩阵乘积的行列式变形(上篇)_哔哩哔哩_bilibili import Mathlib.LinearAlgebra.Matrix.Determinant import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Data.Real.Sqrt import Mathlib.Data.List.Perm -- 本文

    2024年02月03日
    浏览(43)
  • 机器学习——线性代数中矩阵和向量的基本介绍

    矩阵的基本概念(这里不多说,应该都知道) 而向量就是一个特殊的矩阵,即向量只有一列,是个n*1的矩阵 注 :一般矩阵用大写字母表示,向量用小写字母表示 先从简单开始,即一个矩阵和一个向量相乘的运算 矩阵相乘的结果的维度为 m*k 矩阵乘法满足结合律不满足交换律

    2024年02月21日
    浏览(45)
  • 线性代数基础【3】向量

    一、基本概念 ①向量 ②向量的模(长度) ③向量的单位化 ④向量的三则运算 ⑤向量的内积 二、向量运算的性质 (一)向量三则运算的性质 α + β = β + α α + (β + γ) = (α + β) + γ k (α + β) = kα + kβ (k + l) α = kα + lα (二)向量内积运算的性质 (α , β) = (β , α) = α^Tβ = β^Tα (α , α)

    2024年02月03日
    浏览(50)
  • 线性代数基础--向量

    目录 向量的概念 基本概念 抽象概念 向量的意义  几何意义 物理意义 欧式空间 特点和性质  行向量与列向量 行向量 列向量 两者的关系 向量的基本运算与范数 向量的基本运算 向量的加法 数乘运算(实数与向量相乘) 转置 向量的范数 向量的模与内积 向量的模 向量的内积

    2024年02月11日
    浏览(57)
  • 线性代数(一)——向量基础

    线性代数的核心是向量的加和乘两种运算的组合,本篇博客为线性代数的一个引子,主要从向量、线性组合和矩阵逐步引出线性代数的相关知识。 首先介绍的是向量相关,向量是基础。 已知列向量: υ = [ v 1 v 2 ] boldsymbol{upsilon}=left[begin{matrix} v_1 \\\\ v_2end{matrix} right] υ =

    2024年03月21日
    浏览(50)
  • 陶哲轩工作流之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2前置知识]不同求和范围不同函数项结果相等的条件

    有空点赞我的视频哦:陶哲轩工作流之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2前置知识]不同求和范围不同函数项结果相等的条件_哔哩哔哩_bilibili -- 反向推理 refine\\\' sum_bij _ _ _ _ _ -- {s : Finset α} {t : Finset γ} {f : α → β} {g : γ → β} -- (i : ∀ a ∈ s, γ) -- (hi : ∀ a ha,

    2024年01月17日
    浏览(49)
  • 线性代数-Python-01:向量的基本运算 - 手写Vector及numpy的基本用法

    https://github.com/Chufeng-Jiang/Python-Linear-Algebra-for-Beginner/tree/main 单位向量叫做 u hat Vector.py _globals.py main_vector.py main_numpy_vector.py

    2024年02月08日
    浏览(41)
  • 向量空间模型的线性代数基础

    [toc] 线性代数是向量空间模型的基础,对于学习向量空间模型的朋友,理解线性代数基础知识是非常必要的。本文将介绍向量空间模型的线性代数基础,包括基本概念、技术原理、实现步骤、应用示例以及优化与改进等内容。 引言 线性代数是数学的一个分支,主要研究线性

    2024年02月16日
    浏览(43)
  • 线性代数基础 | 特征值和特征向量

    一、特征值和特征向量的定义 A. 特征值的定义和性质 特征值(eigenvalue)是线性代数中一个重要的概念,用于描述线性变换对于某个向量的伸缩效应。在本文中,我们将深入讨论特征值的定义和性质。 首先,我们考虑一个线性变换(或者说一个方阵)A。对于一个非零向量v,

    2024年02月16日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包