Android使用陀螺仪

这篇具有很好参考价值的文章主要介绍了Android使用陀螺仪。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Android使用陀螺仪

陀螺仪基础运用与理解

在Android应用中使用陀螺仪可以帮助实现各种功能,比如游戏控制、虚拟现实体验、运动追踪等。以下是使用Android陀螺仪的基本步骤:

  1. 获取传感器服务
    首先,需要获取设备上的陀螺仪传感器服务。可以通过SensorManager类来获取。

  2. 注册监听器
    使用SensorManager注册一个陀螺仪传感器监听器,以便获取传感器数据。监听器会在手机的陀螺仪传感器有新数据时得到通知。

  3. 处理传感器数据
    一旦注册了监听器,就可以在相应的回调方法中处理陀螺仪传感器提供的数据。通常,陀螺仪传感器提供的数据包括角速度(角速度变化率)等信息。

  4. 解析和利用数据
    可以根据陀螺仪传感器提供的数据,实现自定义的功能。例如,可以根据角速度数据计算设备的姿态、方向或者用于控制游戏。

  5. 注意释放资源
    在不需要使用陀螺仪传感器时,要记得及时取消注册监听器以节省系统资源。

示例代码如下所示:

SensorManager sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
Sensor gyroscopeSensor = sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);

SensorEventListener gyroscopeListener = new SensorEventListener() {
    @Override
    public void onSensorChanged(SensorEvent event) {
        // 处理陀螺仪数据
        float x = event.values[0];
        float y = event.values[1];
        float z = event.values[2];
        
        // 进行相关操作,比如更新界面或执行相应逻辑
    }

    @Override
    public void onAccuracyChanged(Sensor sensor, int accuracy) {
        // 当传感器精度发生变化时触发
    }
};

sensorManager.registerListener(gyroscopeListener, gyroscopeSensor, SensorManager.SENSOR_DELAY_NORMAL);

处理陀螺仪数据的说明:

onSensorChanged 方法中,提取了传感器事件对象 event 中的 x、y 和 z 轴数值。这些数值代表设备在三维空间中的旋转情况,以下是对不同轴对应数据意义的具体解释:

  1. x = event.values[0];

    • X 轴数据 (event.values[0]):
      • 通常表示设备在 x 轴方向上的旋转速度或角度变化。
      • 正值表示设备向右旋转,负值表示向左旋转。
  2. y = event.values[1];

    • Y 轴数据 (event.values[1]):
      • 一般代表设备在 y 轴方向上的旋转速度或角度变化。
      • 正值表示设备向上旋转,负值表示向下旋转。
  3. z = event.values[2];

    • Z 轴数据 (event.values[2]):
      • 表示设备在 z 轴方向上的旋转速度或角度变化情况。
      • 正值表示顺时针旋转,负值表示逆时针旋转。

通过监测和分析这些不同轴上的陀螺仪数据,我们可以获取设备在空间中的旋转运动信息。每个轴的数据提供了有关设备旋转方向和速度的重要信息,可用于实现姿态跟踪、游戏控制、虚拟现实体验等功能。开发者可以根据这些数据进行相应的处理和响应,使应用程序能够更好地与用户设备的动作互动和协调。

陀螺仪封装

  1. VrMotionStrategy
    • VrMotionStrategy 类则更通用且灵活,可用于处理多种虚拟现实应用程序中的传感器数据。
    • 不一定专门与某个特定硬件设备或头戴式设备相关联,而是可以适用于各种虚拟现实应用场景。
    • 主要用于处理传感器数据,例如旋转矢量传感器数据,以支持虚拟现实环境中的运动、方向变化和交互操作。
    • 可能还涉及到数据处理、传输和与其他系统组件的交互,以便在虚拟现实应用程序中实现各种功能。
  • VrMotionStrategy 则更通用且灵活,用于处理传感器数据以支持虚拟现实应用程序中的各种功能和交互。
package com.vr;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Handler;
import android.os.Looper;
import android.util.Log;
import android.view.WindowManager;

import com.vr.common.MDGLHandler;
import com.vr.common.MDMainHandler;
import com.vr.common.VRUtil;

import com.ndk.VrNativeUtils;


public class VrMotionStrategy  implements SensorEventListener {

    private static final String TAG = "MotionStrategy";
    private  MDGLHandler mGLHandler;
    private WindowManager windowManager;
    private VrNativeUtils nativeUtils2=null;

    private float[] mSensorMatrix = new float[16];

    private float[] mTmpMatrix = new float[16];

    private boolean mRegistered = false;

    private Boolean mIsSupport = null;

    private final Object mMatrixLock = new Object();

    private boolean isOn;

    public VrMotionStrategy() {

    }
    private Handler mMainHandler = null;

    protected Handler getMainHandler() {
        if (null == mMainHandler) {
            synchronized (this) {
                if (null == mMainHandler) {
                    mMainHandler = new Handler(Looper.getMainLooper());
                }
            }
        }
        return mMainHandler;
    }

    protected void runOnUiThread(Runnable runnable) {
        getMainHandler().post(runnable);
    }

    public void onResume(Context context) {
        registerSensor(context);
    }



    public void onPause(Context context) {
        unregisterSensor(context);
    }






    public void turnOnInGL(Context context) {
        isOn = true;
        windowManager = (WindowManager)context.getSystemService(Context.WINDOW_SERVICE);

    }


    public void turnOffInGL(final Context context) {
        isOn = false;
        runOnUiThread(new Runnable() {
            @Override
            public void run() {
                unregisterSensor(context);
            }
        });
    }


    public boolean isSupport(Context context) {
        if (mIsSupport == null){
            SensorManager mSensorManager = (SensorManager) context
                    .getSystemService(Context.SENSOR_SERVICE);
            Sensor sensor = mSensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);
            mIsSupport = (sensor != null);
        }
        return mIsSupport;
    }

    protected void registerSensor(Context context){
        if (mRegistered) return;

        SensorManager mSensorManager = (SensorManager) context
                .getSystemService(Context.SENSOR_SERVICE);
        Sensor sensor = mSensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

        if (sensor == null){
            Log.e(TAG,"TYPE_ROTATION_VECTOR sensor not support!");
            return;
        }

        mSensorManager.registerListener(this, sensor, SensorManager.SENSOR_DELAY_GAME, MDMainHandler.sharedHandler());

        mRegistered = true;
    }

    protected void unregisterSensor(Context context){
        if (!mRegistered) return;

        SensorManager mSensorManager = (SensorManager) context
                .getSystemService(Context.SENSOR_SERVICE);
        mSensorManager.unregisterListener(this);

        mRegistered = false;
    }

    @Override
    public void onSensorChanged(final SensorEvent event) {
        if (isOn && event.accuracy != 0){
            int type = event.sensor.getType();
            switch (type){
                case Sensor.TYPE_ROTATION_VECTOR:
                    // post
                    if (windowManager != null){
                        VRUtil.sensorRotationVector2Matrix(event, windowManager.getDefaultDisplay().getRotation(), mSensorMatrix);
                    }

                    // mTmpMatrix will be used in multi thread.
                    synchronized (mMatrixLock){
                        System.arraycopy(mSensorMatrix, 0, mTmpMatrix, 0, 16);
                    }
                    synchronized (mMatrixLock){
                      //TODO 获取对应的矩阵-mTmpMatrix
                    }
                    break;
            }
        }
    }

    @Override
    public void onAccuracyChanged(Sensor sensor, int accuracy) {

    }
}

当检测到 Sensor.TYPE_ROTATION_VECTOR 类型的传感器事件时,意味着可以利用传感器提供的旋转数据来实现各种功能,如姿态跟踪、虚拟现实体验和游戏控制等。

矩阵说明

android 陀螺仪,android,android,陀螺仪

private static final String TAG = "VRUtil"; // 定义日志标签为"VRUtil"

// 用于存储临时矩阵的数组
private static float[] sUIThreadTmp = new float[16];

// 用于存储截断后的旋转向量的数组和标志位
private static float[] sTruncatedVector = new float[4];
private static boolean sIsTruncated = false;

// 将传感器事件转换为旋转矩阵
public static void sensorRotationVector2Matrix(SensorEvent event, int rotation, float[] output) {
    // 如果未进行截断,尝试从旋转向量获得旋转矩阵
    if (!sIsTruncated) {
        try {
            SensorManager.getRotationMatrixFromVector(sUIThreadTmp, event.values);
        } catch (Exception e) {
            // 在某些三星设备上,如果旋转向量的元素超过4个,SensorManager#getRotationMatrixFromVector会抛出异常
            // 因为只使用前四个元素,我们可以截断向量而不会失去精度
            Log.e(TAG, "maybe Samsung bug, will truncate vector"); // 记录错误日志
            sIsTruncated = true; // 设置截断标志为true
        }
    }

    // 如果已截断,则复制前四个元素到截断向量数组,并从该截断向量获取旋转矩阵
    if (sIsTruncated){
        System.arraycopy(event.values, 0, sTruncatedVector, 0, 4); // 复制前四个元素
        SensorManager.getRotationMatrixFromVector(sUIThreadTmp, sTruncatedVector); // 从截断向量获取旋转矩阵
    }

    float[] values = event.values; // 获取传感器事件的值
    switch (rotation) { // 根据设备屏幕的旋转角度进行处理
        case Surface.ROTATION_0:
            SensorManager.getRotationMatrixFromVector(output, values); // 根据传感器值获取旋转矩阵
            break;
        case Surface.ROTATION_90:
            SensorManager.getRotationMatrixFromVector(sUIThreadTmp, values);
            SensorManager.remapCoordinateSystem(sUIThreadTmp, SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X, output);
            break;
        case Surface.ROTATION_180:
            SensorManager.getRotationMatrixFromVector(sUIThreadTmp, values);
            SensorManager.remapCoordinateSystem(sUIThreadTmp, SensorManager.AXIS_MINUS_X, SensorManager.AXIS_MINUS_Y, output);
            break;
        case Surface.ROTATION_270:
            SensorManager.getRotationMatrixFromVector(sUIThreadTmp, values);
            SensorManager.remapCoordinateSystem(sUIThreadTmp, SensorManager.AXIS_MINUS_Y, SensorManager.AXIS_X, output);
            break;
    }

    Matrix.rotateM(output, 0, 90.0F, 1.0F, 0.0F, 0.0F); // 对输出的旋转矩阵绕x轴顺时针旋转90度
}

这段代码解释了一个方法,其目的是将传感器事件数据转换为旋转矩阵,以便在虚拟现实应用程序中使用。其中对截断向量、旋转矩阵的生成和根据设备屏幕旋转角度的不同进行不同的坐标系变换等操作。文章来源地址https://www.toymoban.com/news/detail-859260.html

到了这里,关于Android使用陀螺仪的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 6轴陀螺仪姿态解算

    之前看过学长姿态解算相关代码,因为要做平衡车的项目,希望陀螺仪处理数据能够达到很好的效果,大概2个星期前,看的学长代码,当时把大部分代码看懂是用来干什么的,但原理还是一窍不通,没办法,太高深了hhhhh。用学长的代码很顺利就完成了基本工作,但当时调

    2023年04月08日
    浏览(34)
  • 使用videojs和videosjs-vr实现全景视频的播放以及手机陀螺仪和视角回正

    一、前言: 刚去一家新公司,公司要求使用videojs和videojs-vr实现播放全景视频的功能,videojs是一个播放普通视频的插件,videojs-vr也是一个插件,它的作用是让videojs可以播放全景视频。 二、先放代码: html部分:

    2024年02月10日
    浏览(39)
  • 陀螺仪MPU6050(IIC&源码)

    1. 陀螺仪 1.1   什么是陀螺仪? 检测角度变化的一个装置。 1.1.1  有什么用?? 用于检测角度变化,用角度变化的值判断物体的运动轨迹。 1.1.2  我们怎么用? 我们是使用这个装置(或者说设备)获取到数据,再使用这个数据得到我们想要的信息。 这里我使用陀螺仪获取板

    2024年02月13日
    浏览(38)
  • 陀螺仪小车(Forerake-Car)

    项目简介:搭建一辆有arduino UNO 与rnf24l01组成的小车;手部安装由arduino nano开发板、nrf24l01、imu构成的手势控制器,利用手势控制器检测手部状态、发送信号对小车进行前进,实现基于卡尔曼滤波的MPU6050姿态结算。 如果你想搭建一辆有Arduino UNO和nRF24L01组成的小车,并使用手势

    2024年02月14日
    浏览(78)
  • MPU6050六轴陀螺仪外围电路分析

    MPU6050六轴陀螺仪常用的外围电路设计分析 AUX_DA引脚:用于传输辅助数据。通过该引脚,MPU6050可以与外部设备或其他传感器进行数据交换。可以将其他传感器(如磁力计)连接到AUX_DA引脚,以获取额外的数据或实现其他特殊功能。 AUX_CL引脚:用于提供辅助时钟信号。MPU6050可

    2024年01月25日
    浏览(39)
  • 三轴陀螺仪解算姿态(四元数)

    三轴陀螺仪可以测量载体在三个轴上的角速度分量,对这些角速度进行积分就可以得到旋转的角度,应用到载体上就可以得到载体的姿态。 假设导航坐标系为东北天,载体坐标系为右前上。 初始载体坐标系和导航坐标系重合,对应的四元数为q=[1,0,0,0],使用此四元数表示 载

    2024年02月05日
    浏览(40)
  • 课题学习(十九)----Allan方差:陀螺仪噪声分析

       Allan方差是一种分析时域数据序列的方法,用于测量振荡器的频率稳定性。该方法还可用于确定系统中作为平均时间函数的本征噪声。该方法易于计算和理解,是目前最流行的识别和量化惯性传感器数据中存在的不同噪声项的方法之一。该方法的结果与适用于惯性传感器

    2024年01月22日
    浏览(43)
  • 陀螺仪与加速度计的姿态融合——互补滤波

    本篇文章我们来讲讲如何将陀螺仪和加速度计的数据结合起来,获取更准确的姿态数据,使用的是互补滤波的方法。 阅读本文需有一定的知识基础,可以参见作者以前MPU6050的两篇文章:《MPU6050陀螺仪和加速度计数据的获取和校准》、《MPU6050官方DMP的移植和使用》,以及了解

    2024年02月03日
    浏览(45)
  • 【QT】OpenGL显示六轴陀螺仪3D实时姿态

    https://blog.csdn.net/qq_35629971/article/details/126203543?spm=1001.2014.3001.5506 新建一个qt的空白工程,附带UI界面,我的工程名称就叫my_3d UI界面可以可以放一些自己想要的按键、文本或者其他控件。这个不影响3D效果的展示,这些控件都会展示在3D效果图的上层,不会被3D效果覆盖 首先我们

    2024年02月02日
    浏览(42)
  • MPU6050 加速度计和陀螺仪传感器与 Arduino 连接

    MPU6050是一款非常流行的加速度计陀螺仪芯片,具有六轴感应和 16 位测量分辨率。这种意义上的高精度和低廉的成本使其在 DIY 社区中非常受欢迎。甚至许多商业产品都配备了 MPU6050。陀螺仪和加速度计的组合通常被称为惯性测量单元或 IMU。 IMU 传感器用于各种应用,例如手机

    2024年02月02日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包