无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo

这篇具有很好参考价值的文章主要介绍了无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

无人驾驶

无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo,机器视觉,自动驾驶,汽车,dnn

百度apollo课程 1-5

百度apollo课程 6-8

七月在线 无人驾驶系列知识入门到提高

当今,自动驾驶技术已经成为整个汽车产业的最新发展方向。应用自动驾驶技术可以全面提升汽车驾驶的安全性、舒适性,满足更高层次的市场需求等。自动驾驶技术得益于人工智能技术的应用及推广,在环境感知、精准定位、决策与规划、控制与执行、高精地图与车联网V2X 等方面实现了全面提升。科研院校、汽车制造厂商、科技公司、自动驾驶汽车创业公司以及汽车零部件供应商在自动驾驶技术领域进行不断地探索,寻求通过人工智能技术来获得技术上的新突破。

自动驾驶汽车(Automated Vehicle;Intelligent Vehicle;Autonomous Vehicle;Self-drivingCar;Driverless Car)又称智能汽车、自主汽车、自动驾驶汽车或轮式移动机器人,是一种通过计算机实现自动驾驶的智能汽车。

自动驾驶汽车等级标准,SAE J3016 标准(Level0~Level 5 共6 个级别)、

  • Level 0:无自动化,由人类驾驶员全程操控汽车,但可以得到示警式或须干预的辅助信息。
  • Level 1:辅助驾驶,利用环境感知信息对转向或纵向加减速进行闭环控制,其余工作由人类驾驶员完成。
  • Level 2:部分自动化,利用环境感知信息同时对转向和纵向加减速进行闭环控制,其余工作由人类驾驶员完成。
  • Level 3:有条件自动化,由自动驾驶系统完成所有驾驶操作,人类驾驶员根据系统请求进行干预。
  • Level 4:高度自动化,由自动驾驶系统完成所有驾驶操作,无需人类驾驶员进行任何干预,但须限定道路和功能。
  • Level 5:完全自动化,由自动驾驶系统完成所有的驾驶操作,人类驾驶员能够应付的所有道路和环境,系统也能完全自动完成。

目前对于自动驾驶汽车的研究有两条不同的技术路线:一条是渐进提高汽车驾驶的自动化水平;另一条是“一步到位”的无人驾驶技术发展路线。由SAE J3016 标准可以看出,通常大家谈论的无人驾驶汽车对应该标准的Level 4 和Level 5 级。无人驾驶汽车是自动驾驶的一种表现形式,它具有整个道路环境中所有与车辆安全性相关的控制功能,不需要驾驶员对车辆实施控制。

〉 自动驾驶技术的价值

    1. 改善交通安全。驾驶员的过失责任是交通事故的主要因素。无人驾驶汽车不受人的心理和情绪干扰,保证遵守交通法规,按照规划路线行驶,可以有效地减少人为疏失所造成的交通事故。
    1. 实现节能减排。由于通过合理调度实现共享享出行,减少了私家车购买数量,车辆绝对量的减少,将使温室气体排量大幅降低。
    1. 消除交通拥堵,提升社会效率。自动驾驶汽车可以通过提高车速、缩小车距以及选择更有效路线来减少通勤所耗时间。
    1. 个人移动能力更加便利,不再需要找停车场。
    1. 拉动汽车、电子、通信、服务、社会管理等协同发展,对促进我国产业转型升级具有重大战略意义。

实战

自动驾驶汽车关键技术包括环境感知、精准定位、决策与规划、控制与执行、高精地图与车联网V2X 以及自动驾驶汽车测试与验证技术;人工智能在自动驾驶汽车中的应用包括人工智能在环境感知中的应用、人工智能在决策规划中的应用、人工智能在车辆控制中的应用。

计算机视觉(处理摄像头,分割、检测、识别)
			定位(算法+HD MAP)   路径规划  控制
传感器融合fusion(激光雷达等)


以百度apollo 无人驾驶平台介绍相关的技术
  1. 感知
  2. 定位
  3. 规划
  4. 控制
  5. 高精度地图和车联网 基础设施

comma.ai(无人驾驶公司)的这两千行Python/tf代码 Learning a Driving Simulator

openpilot 一个开源的自动驾驶(驾驶代理),它实行 Hondas 和 Acuras 的自适应巡航控制(ACC)和车道保持辅助系统(LKAS)的功能。

Autoware

udacity/self-driving-car

第六十八篇:从ADAS到自动驾驶(一):自动驾驶发展及分级

1.环境感知,起着人类驾驶员“眼睛”“耳朵”的作用

  • 摄像机可以识别车辆行驶环境中的车辆、行人、车道线、路标、交通标志、交通信号灯等。它具有较高的图像稳定性、抗干扰能力和传输能力等特点。
  • 激光雷达是以发射激光束来探测目标空间位置的主动测量设备。
  • 毫米波雷达是指工作在毫米波波段、频率在30—300GHz 之间的雷达。根据测量原理的不同,毫米波雷达可分为脉冲方式毫米波雷达和调频连续波方式毫米波雷达两种。
  • 超声波雷达的数据处理简单快速,检测距离较短,多用于近距离障碍物检测。

目前,环境感知技术有两种技术路线,一种是以摄像机为主导的多传感器融合方案,典型代表是特斯拉。另一种是以激光雷达为主导,其他传感器为辅助的技术方案,典型企业代表如谷歌、百度等。

摄像机捕获图像(RGB图像) -> 预处理(缩放、旋转、格式转换) -> 提取特征 -> 物体检测/分类/语义分割/识别等

激光雷达捕获距离数据(点云数据) -> 预处理(PCL点云处理,降采样,聚类分割等) -> 提取特征(形状、表面纹理) -> 三维检测框(三维框+类别)

后两步,现在一般使用DCNN深度神经网络来实现。

检测 -> 跟踪(连续帧,检测出的物体匹配关联(利用局部二值模式特征/方向梯度直方图等特征进行匹配)) -> 判断速度(辅助雷达数据(三维点云数据,含有精确的距离信息)) -> 预测物体轨迹(未来的速度和位置)
-> 检测出 动态物体 和 车道线 -> 用于规划和决策

透视变换 和 滑动窗口跟踪

语义分割理解环境障碍物道路等,CNN卷积网络编码得到特征 -> 反卷积(或池化索引上采样+卷积)解码网络

高精度地图中,设定ROI感兴趣三维(点云)/二维(图像)区域,以缩小 查询匹配范围,加快感知,实际检测的静态物体(交通灯等)会在HD map中查找,辅助实际环境中的感知过程

相机 雷达radar 激光雷达LiDAR 在各种使用场景和环境下个有优缺点,所以需要结合他们的优点,达到在各种场景中最优,所以需要传感器融合技术

雷达radar 激光雷达LiDAR 检测障碍物,传感器融合的算法为 卡尔曼滤波(预测+测量误差更新)

数据同步融合 / 数据异步融合

有数据级融合,特征级融合,目标级融合,应用于不同的场景,融合策略就不同。

2.精准定位

  • 惯性导航系统由陀螺仪和加速度计构成,通过测量运动载体的线加速度和角速率数据,并将这些数据对时间进行积分运算,从而得到速度、位置和姿态。

车辆速度 时间 初始位置 和 初始速度 车辆加速度。

短时间内准确,长时间内,由于IMU数据飘逸,变得的不准确,可以和GPS结合

  • 轮速编码器与航迹推算.可以通过轮速编码器推算出自动驾驶汽车的位置。通常文章来源地址https://www.toymoban.com/news/detail-859388.html

到了这里,关于无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 图像识别在自动驾驶汽车中的决策规划与控制策略研究。

    图像识别在自动驾驶汽车中的决策规划与控制策略研究 随着自动驾驶技术的不断发展,图像识别已经成为实现自动驾驶的关键技术之一。在自动驾驶汽车中,图像识别技术主要用于环境感知、决策规划和控制系统。本文将重点探讨图像识别在自动驾驶汽车中的决策规划与控制

    2024年02月08日
    浏览(35)
  • 自动驾驶环境感知之激光雷达物体检测算法

    前言 :视觉感知包括二维和三维视觉感知,其最终目的是为了获取三维世界坐标系下感兴趣的目标和场景的信息。单目相机下,需要几何约束或者海量数据来学习,以此来推测三维信息。双目相机下,可基于立体视觉原理来计算目标的深度信息,但在光照条件比较差或者纹理

    2024年01月23日
    浏览(44)
  • 自动驾驶环境感知之基于深度学习的毫米波雷达感知算法

    (1)基本的数据形式 ADC(数模转换)数据块:由Chirp采样N、每帧内Chirp个数M和天线K组成的三维数据块的中频信号 Range-Azimuth-Doppler数据块:将中频信号数据块分别在距离、速度、角度三个维度上进行FFT操作,得到距离-角度-速度表征的RAD数据块。其中,角度是指水平方向的旋

    2024年01月25日
    浏览(39)
  • 无人驾驶汽车的相关技术,无人驾驶相关技术知识

    无人驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,通过电脑实现无人驾驶,可以在没有任何人类主动的操作下,自动安全地操作机动车辆。 无人驾驶依赖几种先进技术,这些互为补充的技术感知周围环境、进行自我导航。究竟这些技术如何协

    2024年02月05日
    浏览(29)
  • 无人驾驶汽车运动规划方法研究综述 - 阅读笔记

    本文旨在对自己的研究方向做一些学习记录,方便日后回顾,详细论文细节见:无人驾驶汽车运动规划方法研究综述 1 摘要 文章从 环境建模 和 路径搜索 两个方面对现有的路径规划算法进行阐述(算法原理、应用现状、优缺点)。 2 引言 一般基于图的搜索算法产生的基础路

    2024年01月16日
    浏览(47)
  • 超维空间S2无人机使用说明书——11、使用3维激光雷达实现ROS无人机的精准定位

    一、视频演示 视频演示: 3D雷达定位效果展示 二、源码连接 后续补充 三、启动雷达节点,确保雷达发布数据 未出现红色报错,表明程序运行正常 launch文件详解

    2024年01月23日
    浏览(42)
  • 自动驾驶感知——激光雷达物体检测算法

    输入 ❖ 点:X, Y, Z和反射强度R ❖ 点云:多个点的集合(无序的,非结构化的数据) 输出 ❖ 目标的类别和置信度 ❖ 目标的边框(BoundingBox) 中心点3D坐标,长宽高,旋转角度 ❖目标的其它信息 速度,加速度等 算法 ❖ 点云表示:点视图,俯视图,前视图     如下表所

    2024年02月06日
    浏览(74)
  • 自动驾驶感知系统-超声波雷达

    超声波雷达,是通过发射并接收40kHz的超声波,根据时间差算出障碍物距离。其测距精度是1~3cm.常见的超声波雷达有两种:第一种是安装在汽车前后保险杠上的,用于测量汽车前后障碍物的驻车雷达或倒车雷达,称为超声波驻车辅助传感器(Ultrasonic Parking Assistant, UPA);第二种

    2024年02月16日
    浏览(30)
  • 华为智能汽车解决方案BU智能驾驶产品部AI预测决策算法/软件岗招聘

    智驾-AI预测决策团队-数据驱动,智能决策 Advanced Driving System(HUAWEI ADS) :让人驾更安全,让智驾更轻松 ADS 1.0: 基于高精HD地图,高速、城区场景都有智驾功能辅助去完成,一二线城市。 ADS 2.0: 仅需标精SD地图(比如高德),强调的是对全场景的难点打通,进一步提升体验(

    2024年04月10日
    浏览(44)
  • 自动驾驶感知传感器标定安装说明

    1. 概述 本标定程序为整合现开发的高速车所有标定模块,可实现相机内参标定和激光、相机、前向毫米波 至车辆后轴中心标定,标定参数串联传递并提供可视化工具验证各个模块标定精度。整体标定流程如下,标定顺序为下图前标0--1--2--3,相同编号标定顺序没有强制要求,

    2024年02月11日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包