伪装目标检测中数据集的标注格式:COCO和VOC

这篇具有很好参考价值的文章主要介绍了伪装目标检测中数据集的标注格式:COCO和VOC。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.OSFormer中提供的COD10K的json格式,是coco的格式,但由于伪装目标检测任务的特殊性,标注信息中还有一个segmentation段

 "images": [
        {
            "id": 3039,
            "file_name": "COD10K-CAM-1-Aquatic-1-BatFish-3.jpg",
            "width": 800,
            "height": 533,
            "date_captured": "2020-08-21 01:23:18.643991",
            "license": 1,
            "url": ""
        }
    ],
    "categories": [
        {
            "id": 1,
            "name": "foreground",
            "supercategory": "saliency"
        }
    ],
    "annotations": [
        {
            "id": 3533,
            "image_id": 3039,
            "category_id": 1,
            "iscrowd": 0,
            "area": 104946,
            "bbox": [
                96.0,
                60.0,
                544.0,
                431.0
            ],
            "segmentation": [
                [
                    513.0,
                    490.9980392156863,
                    505.0,
                    490.9980392156863,
                    469.0,
                    476.9980392156863,
                    459.0,
                    479.9980392156863,
                    450.0,
                    471.9980392156863,
                    442.0,
                    472.9980392156863,
                    439.0,
                    467.9980392156863,
                    434.0,
                    477.9980392156863,
                    428.0,
                    467.9980392156863,
                    427.9980392156863,
                    473.0,
                    424.0,
                    475.9980392156863,

首先将一整个json文件分解:

from __future__ import print_function
import json
json_file='D:/projects/SINet-V2-main/json/train_instance.json' #
# Object Instance 类型的标注
# person_keypoints_val2017.json
# Object Keypoint 类型的标注格式
# captions_val2017.json
# Image Caption的标注格式
data=json.load(open(json_file,'r'))
data_2={}
# da ta_2['info']=data['info']
# data_2['licenses']=data['licenses']
for i in range(3040): # 一共234张图片

    data_2['images']=[data['images'][i]] # 只提取第i张图片
    data_2['categories']=data['categories']
    annotation=[] # 通过imgID 找到其所有对象
    imgID=data_2['images'][0]['id']
    for ann in data['annotations']:
        if ann['image_id']==imgID:
            annotation.append(ann)
    data_2['annotations']=annotation # 保存到新的JSON文件,便于查看数据特点
    savepath = 'D:/projects/SINet-V2-main/json/single/' + data_2['images'][0]['file_name']+ '.json'
    json.dump(data_2,open(savepath,'w'),indent=4) # indent=4 更加美观显示

然后转化为VOC格式:

import os
import numpy as np
import codecs
import json
from glob import glob
import cv2
import shutil
from sklearn.model_selection import train_test_split

# 1.存放的json标签路径
labelme_path = "D:/projects/SINet-V2-main/json/single/"

# 原始labelme标注数据路径
saved_path = "D:/projects/SINet-V2-main/json/COD10K-voc/"
# 保存路径
isUseTest = None  # 是否创建test集

# 2.创建要求文件夹
if not os.path.exists(saved_path + "Annotations"):
    os.makedirs(saved_path + "Annotations")
if not os.path.exists(saved_path + "JPEGImages/"):
    os.makedirs(saved_path + "JPEGImages/")
if not os.path.exists(saved_path + "ImageSets/Main/"):
    os.makedirs(saved_path + "ImageSets/Main/")

# 3.获取待处理文件
files = glob(labelme_path + "*.json")
files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
print(files)

# 4.读取标注信息并写入 xml
for json_file_ in files:
    json_filename = labelme_path + json_file_ + ".json"
    json_file = json.load(open(json_filename, "r", encoding="utf-8"))

    height, width, channels = cv2.imread('D:/projects/SINet-V2-main/json/dataset/image/' + json_file_).shape
    with codecs.open(saved_path + "Annotations/" + json_file_ + ".xml", "w", "utf-8") as xml:

        xml.write('<annotation>\n')
        xml.write('\t<folder>' + 'CELL_data' + '</folder>\n')
        xml.write('\t<filename>' + json_file_  + '</filename>\n')
        xml.write('\t<source>\n')
        xml.write('\t\t<database>CELL Data</database>\n')
        xml.write('\t\t<annotation>CELL</annotation>\n')
        xml.write('\t\t<image>bloodcell</image>\n')
        xml.write('\t\t<flickrid>NULL</flickrid>\n')
        xml.write('\t</source>\n')
        xml.write('\t<owner>\n')
        xml.write('\t\t<flickrid>NULL</flickrid>\n')
        xml.write('\t\t<name>CELL</name>\n')
        xml.write('\t</owner>\n')
        xml.write('\t<size>\n')
        xml.write('\t\t<width>' + str(width) + '</width>\n')
        xml.write('\t\t<height>' + str(height) + '</height>\n')
        xml.write('\t\t<depth>' + str(channels) + '</depth>\n')
        xml.write('\t</size>\n')
        xml.write('\t\t<segmented>0</segmented>\n')# 是否用于分割(在图像物体识别中01无所谓)
        cName = json_file["categories"]
        Name = cName[0]["name"]
        print(Name)
        for multi in json_file["annotations"]:
            points = np.array(multi["bbox"])
            labelName = Name
            xmin = points[0]
            xmax = points[0]+points[2]
            ymin = points[1]
            ymax = points[1]+points[3]
            label = Name
            if xmax <= xmin:
                pass
            elif ymax <= ymin:
                pass
            else:
                xml.write('\t<object>\n')
                xml.write('\t\t<name>' + labelName + '</name>\n')# 物体类别
                xml.write('\t\t<pose>Unspecified</pose>\n')# 拍摄角度
                xml.write('\t\t<truncated>0</truncated>\n')# 是否被截断(0表示完整)
                xml.write('\t\t<difficult>0</difficult>\n')# 目标是否难以识别(0表示容易识别)
                xml.write('\t\t<bndbox>\n')
                xml.write('\t\t\t<xmin>' + str(int(xmin)) + '</xmin>\n')
                xml.write('\t\t\t<ymin>' + str(int(ymin)) + '</ymin>\n')
                xml.write('\t\t\t<xmax>' + str(int(xmax)) + '</xmax>\n')
                xml.write('\t\t\t<ymax>' + str(int(ymax)) + '</ymax>\n')
                xml.write('\t\t</bndbox>\n')
                xml.write('\t</object>\n')
                print(json_filename, xmin, ymin, xmax, ymax, label)
        xml.write('</annotation>')

# 5.复制图片到 VOC2007/JPEGImages/下
image_files = glob("labelmedataset/images/" + "*.jpg")
print("copy image files to VOC007/JPEGImages/")
for image in image_files:
    shutil.copy(image, saved_path + "JPEGImages/")

# 6.拆分训练集、测试集、验证集
txtsavepath = saved_path + "ImageSets/Main/"
ftrainval = open(txtsavepath + '/trainval.txt', 'w')
ftest = open(txtsavepath + '/test.txt', 'w')
ftrain = open(txtsavepath + '/train.txt', 'w')
fval = open(txtsavepath + '/val.txt', 'w')
total_files = glob("./VOC2007/Annotations/*.xml")
total_files = [i.replace("\\", "/").split("/")[-1].split(".xml")[0] for i in total_files]
trainval_files = []
test_files = []
if isUseTest:
    trainval_files, test_files = train_test_split(total_files, test_size=0.15, random_state=55)
else:
    trainval_files = total_files
for file in trainval_files:
    ftrainval.write(file + "\n")

# split
train_files, val_files = train_test_split(trainval_files, test_size=0.15, random_state=55)

# train
for file in train_files:
    ftrain.write(file + "\n")

# val
for file in val_files:
    print(file)
    fval.write(file + "\n")
for file in test_files:
    print("test:"+file)
    ftest.write(file + "\n")
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()



这样生成的xml文件,没有之前COD10K标注的segmentation信息,还需要进一步考虑,在转换为xml的脚本中加上识别segmentation部分。
参考博客:https://blog.csdn.net/ytusdc/article/details/1319729224
https://blog.csdn.net/xjx19991226/article/details/123386207文章来源地址https://www.toymoban.com/news/detail-859867.html

到了这里,关于伪装目标检测中数据集的标注格式:COCO和VOC的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包