【论文笔记 | 异步联邦】Asynchronous Federated Optimization

这篇具有很好参考价值的文章主要介绍了【论文笔记 | 异步联邦】Asynchronous Federated Optimization。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

论文信息

Asynchronous Federated Optimization,OPT2020: 12th Annual Workshop on Optimization for Machine Learning,不属于ccfa

introduction

背景:联邦学习有三个关键性质

  1. 任务激活不频繁(比较难以达成条件):对于弱边缘设备,学习任务只在设备空闲、充电、连接非计量网络时执行
  2. 通信不频繁:边缘设备和远程服务器之间的连接可能经常不可用、缓慢或昂贵(就通信成本或电池电量使用而言)
  3. 非iid训练数据: 联邦学习不同设备上的数据不相交,因此可能代表来自总体的非相同分布的样本

挑战:系统异构导致的“掉队者”问题

不同设备的计算和通信能力不同,可能会有很多弱设备无法按时完成本地更新任务

解决的问题:

  1. 解决正则化的局部问题保证收敛性
  2. 使用加权平均更新全局模型,其中混合权值作为过时性的函数自适应设置 α

贡献点:

  1. 提出了新的异步联邦优化算法,给出了原型系统设计
  2. 证明了该方法对于一类受限的非凸问题的收敛性
  3. 提出了控制由异步引起的错误的策略。引入一个混合超参数 α,可以自适应地控制收敛速度和方差减少之间的权衡
  4. 实验表明提出的算法收敛速度快,并且在实际设置中通常优于同步联邦优化。

问题描述:System model/架构/对问题的形式化描述

对问题的形式化描述

符号定义
【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读
【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读

0:调度程序通过协调程序触发训练
1,2: worker通过coordinator从server接收模型xt−τ
3 :worker按照算法1计算本地更新。Worker可以在工作和空闲两种状态之间切换
4,5,6:worker通过协调器将本地更新的模型推送到服务器。协调器将5中接收到的模型排成队列,并将它们依次提供给6中的更新程序。
7、8:服务器更新全局模型,并使其准备好在协调器中读取。在系统中,1和5是异步并行运行的

t:当前的全局模型版本
t - τ:设备接收到的全局模型版本
τ:过时度

解决方法

执行流程:

【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读

t:当前的全局模型版本
τ:设备接收到的全局模型版本
t - τ:过时度

挑战问题怎么解决:

  • 解决掉队者问题:允许异步聚合
  • 利用【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读
    ,调整 当前全局模型 与 从设备端接收到的模型 的 权重,完成对全局模型的更新【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读
    目的是降低陈旧模型的权重,减少陈旧模型对全局模型的负面影响

【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读
【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读

s( )需要满足两个条件

  • t = τ 时,模型是最新的,即 s(t-τ)=1
  • 随着 t-τ 的增加, s(t-τ)减少 s( ) 可以设置成以下三种形式 【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读

性能保证:

收敛性分析(略)

效果:重点是实验设计,每一部分实验在验证论文中的什么结论

实验设置

数据集:CIFAR-10 和 WikiText-2。训练集被划分为n = 100个设备。小批量分别为50个和20个。
Baseline:

  • FedAvg:在每个epoch中,随机选择k = 10个设备启动本地更新
  • 单线程SGD
  • FedAsync,通过从均匀分布中随机采样陈旧度(t−τ)来模拟异步
    每个实验重复10次,取平均值。

对比实验

【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读
【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读
【论文笔记 | 异步联邦】Asynchronous Federated Optimization,联邦学习,论文阅读

实验效果:

  • FedAsync的收敛速度一般介于单线程SGD和fedavg之间。较大的α值和较小的陈旧度 使FedAsync更接近单线程SGD较小的α和较大的陈旧度 使得FedAsync更接近fedavg
  • 根据经验,FedAsync通常对超参数不敏感。当偏差较大时,可以通过调整α来提高收敛性。如果没有自适应α,则α越小越好。对于自适应α,经验上的最佳选择是 FedAsync+Hinge。FedAsync+Poly和FedAsync+Hinge具有类似的性能。
  • 与fedavg相比,FedAsync的性能与fedavg一样好,在大多数情况下甚至更好。当陈旧度较小时,FedAsync的收敛速度比fedag快得多。当陈旧度较大时,FedAsync仍然可以达到与fedag相似的性能。

(备选)自己的思考

异步 FL :一个FL生态中有一个Server,多个Device,其中不同device 的计算能力、通信资源以及本地数据集不同,导致device 进行本地模型训练所需的时间不同,有快有慢。传统FL 需要等待所有的device 完成本地模型训练后,server 端才会按照选定的策略(eg:加权平均)进行聚合。但是异步FL 不需要等待,只要涉及训练的device 中有一个完成训练,就可以上传到Server 端完成聚合。

问题: server 端 updater 顺次从 coordinater上获取 Xnew 进行模型更新,假设当最新的模型为 X3
,但其他模型都没训练完成时,全局模型再次更新为 X4,X3是会轮空还是? 思考:目前的论文大部分其实是半异步,就是 Server
端会等待一个固定时间 T 之后进行全局模型聚合,或者等待固定个数 n 个模型后进行聚合。而且一般情况下为了获得较好的模型,实验设定的
device 数都不会很少,基本不需要考虑这样的情况,也就是问题不存在 通过允许 Plato 代码得出, client 端和 fedavg
流程一致,只对算法进行修改 主要的修改在server

动机,通过什么方法解决,达到了什么效果,有什么可以改进的地方

论文对你的启发,包括但不限于解决某个问题的技术、该论文方法的优缺点、实验设计、源码积累等。
备注:文章来源地址https://www.toymoban.com/news/detail-859968.html

  1. 不是每一篇论文都有以上内容,但是尽可能按照以上思路读论文、总结论文。
  2. 注意用自己的话总结以上内容,不要整篇翻译论文,而且不推荐使用类似知云翻译这种软件读论文。建议直接读英文原文,有不理解或者不知道的词可以翻译记录。
  3. 读论文的过程中,一定要多问为什么,多考虑这个问题存不存在、这个方法能不能解决,不要盲目迷信论文作者。
  4. 读论文的目的在于调研本领域的研究内容,发现问题,提出自己的想法,刷论文数量没有意义,需要发现读过论文对自己研究的价值。
  5. 当发现论文中存在自己不了解的技术或者方法,首先进行调研,不要有畏难的心理,多掌握一门工具能帮助你解决自己的研究问题。

到了这里,关于【论文笔记 | 异步联邦】Asynchronous Federated Optimization的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文导读】-Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification纵向联邦图神经网络

    原文地址:https://www.ijcai.org/proceedings/2022/0272.pdf Graph Neural Network (GNN) has achieved remarkable progresses in various real-world tasks on graph data, consisting of node features and the adjacent information between different nodes. High-performance GNN models always depend on both rich features and complete edge information in graph. Howeve

    2024年01月23日
    浏览(44)
  • 【论文导读】- SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks(去服务器的多任务图联邦学习)

    SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks 原文链接:SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks:https://arxiv.org/abs/2106.02743 Graph Neural Networks (GNNs) are the first choice methods for graph machine learning problems thanks to their ability to learn state-of-the-art level repr

    2024年01月16日
    浏览(46)
  • A Decentralized Federated Learning Approach For Connected Autonomous Vehicles 学习笔记---联邦学习、区块链与自动驾驶

    基于自主区块链的联邦学习(BFL) 用于隐私感知和高效的车载通信网络,其中本地车载机器学习(oVML)模型更新以 分布式方式 交换和验证。BFL利用区块链的 共识机制 ,实现无需任何集中训练数据或协调的车载机器学习。 基于更新奖励方法,我们开发了一个数学框架,该框架具

    2024年02月04日
    浏览(50)
  • 【联邦学习(Federated Learning)】- 横向联邦学习与联邦平均FedAvg

    横向联邦学习也称为 按样本划分的联邦学习 ,可以应用于联邦学习的各个参与方的数据集有相同的特征空间和不同的样本空间的场景,类似于在表格视图中对数据进行水平划分的情况。 例如,两个地区的城市商业银行可能在各自的地区拥有非常不同的客户群体,所以他们的

    2023年04月19日
    浏览(45)
  • 联邦学习((Federated Learning,FL)

    每日一诗: 题竹(十三岁应试作于楚王孙园亭) ——明*张居正 绿遍潇湘外,疏林玉露寒。 凤毛丛劲节,只上尽头竿。 近期在阅读联邦学习领域相关文献,简单介绍如下文。本文仅供学习,无其它用途。如有错误,敬请批评指正! 一、联邦学习(Federated Learning,FL): 举目

    2024年02月06日
    浏览(43)
  • 【论文笔记】ZOO: Zeroth Order Optimization

    论文(标题写不下了): 《ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models》 深度神经网络(DNN)是当今时代最突出的技术之一,在许多机器学习任务中实现了最先进的性能,包括但不限于图像分类、文本挖掘、语音处理。 但人们越来越关

    2024年01月23日
    浏览(36)
  • [论文笔记] chatgpt——PPO算法(Proximal Policy Optimization)

    Proximal Policy Optimization (PPO)         避免较多的策略更新。 根据经验,训练期间较小的策略更新更有可能收敛到最优解决方案。 在策略更新中,太大的一步可能会导致“掉下悬崖”(得到一个糟糕的策略),并且有很长时间甚至没有可能恢复。         所以在PPO中,我们

    2024年02月01日
    浏览(38)
  • 论文笔记--FEDERATED LEARNING: STRATEGIES FOR IMPROVING COMMUNICATION EFFICIENCY

    标题:FEDERATED LEARNING: STRATEGIES FOR IMPROVING COMMUNICATION EFFICIENCY 作者:Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Ananda Theertha Suresh, Dave Bacon 日期:2016 期刊:arxiv   文章给出了一种联邦学习(federated learning, FL)的新的方法,可以提升多终端之间的交流效率,从而支持多台设备在不稳定

    2024年02月15日
    浏览(48)
  • DBA: DISTRIBUTED BACKDOOR ATTACKS AGAINST FEDERATED LEARNING 论文阅读笔记

      目录 摘要 一、引言 1.背景(介绍联邦学习的出现,同时引出挑战) 2.研究现状 3.提出方法 4.贡献总结 二、DBA方法介绍 1.总体框架 2.DBA 3.DBA的触发因素 三、实验 1.数据集和实验设置 2.分布式后门攻击VS集中式后门攻击 3.实验准备 4.实验结果 5.分布式攻击的鲁棒性 6.通过特征

    2024年01月24日
    浏览(48)
  • [论文笔记] chatgpt系列 1.1 PPO算法(Proximal Policy Optimization)

    Proximal Policy Optimization (PPO)         避免较多的策略更新。 根据经验,训练期间较小的策略更新更有可能收敛到最优解决方案。 在策略更新中,太大的一步可能会导致“掉下悬崖”(得到一个糟糕的策略),并且有很长时间甚至没有可能恢复。         所以在PPO中,我们

    2024年02月03日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包