数据分析专家能力模型

这篇具有很好参考价值的文章主要介绍了数据分析专家能力模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据分析专家能力模型,原则及方法论,数据分析,人工智能,数据挖掘
招式:懂商业(业务能力)
外功更偏重于技能,首先需要懂招式,即懂商业,数据分析最终是为业务服务的,无论是互联网企业准求的用户增长和UJM分解,还是传统企业追求的降本增效和精细化运营,最终都是为了更好的识别业务问题,寻求解决方案,提出落地建议。如果不懂招式,在雄厚的内力也施展不开。具体来说,懂业务包括三层的业务含义:

LEVE1,业务洞察:能理解各行业的业务特性和业务场景,分析业务指标波动背后的深层原因,评估经营现状,识别经营风险,洞察经营机会。(数据分析师)

LEVE2,策略分析:从客户价值的角度,理解公司的商业模型,业务的核心策略,能从市场环境、行业竞争和公司经营角度,利用数据解析现状,为公司的经营发展提供策略性建议。(策略分析师)

LEVE3,战略布局:能站公司战略以及行业发展的角度,从决策者的角度思考公司的商业模式,行业的发展趋势,理解公司的业务定位理解,探究未来的业务增长价值。(商业分析/战略分析师)

曾经有人问过我一个问题,成为一名数据分析专家,是比业务更懂业务吗?我便反问了他一个逻辑问题,如果数据分析专家比业务更懂业务,为什么他仅满足于给业务提建议,而不是实际深入业务指点江山呢?如此说来,是不是每个做数据分析的最终归宿都是做业务?

当然不是,在我看来,数据分析专家之所以存在的理由,并不是因为他需要比业务更懂业务,比高管更懂战略,若真如此,岂不是高管和业务都双双失业下岗?数据分析专家真正的核心价值,在于站在业务和高管的视角上,通过数据的思维,去发现业务的内在价值,去洞察战略的未来方向。

数据分析真正改变的是一种管理方式,即以数据驱动业务,而非以经验驱动业务。
兵器:懂数据(技术能力)
俗话说,一寸长一寸强,一寸短一寸险,招式虽强,但外功依然需要兵器的辅助。就好比数据分析师的技术能力,虽然数据分析师不追求对算法的精通,对底层模型和数据架构的了解,对数据开放的信手拈来,但优秀的技术能力对招式的展开事半功倍。见过不少商业分析师,一路从高大上的咨询公司和行业研究进入互联网企业,但由于缺少技术能力,取个数还需要招人帮忙,对工作效率的开展确实有不小的影响。具体来说,懂数据包括三个层级的能力:

LEVE1,数据获取能力:能够理解数据链路的业务逻辑,基于现有的数据资产,能快速准确的使用相关工具,获取相应的数据结果,并了解基本的数据验证方法。(表格表姐)

LEVE2,数据分析能力:具有一定的数据分析和处理能力,通过工具,能基于相关的数据资产,进行一定数据的加工和任务的发布,得到符合业务要求的数据结论。(数据分析)

LEVE3,数据架构能力:具有完整的数据架构思维,能知道每个数据节点的实现方式,字段结构,产出时效,回刷周期等信息,能够指导数仓开发人员,基于业务场景构建数据资产,并具有一定的数据治理能力。(数据架构/数据治理)

如果一个数据分析师的技术能力达到了第三层境界,那么对他来说,不仅仅可以成为一名数据分析专家,未来多了很多职业发展的可能,可以往数据架构,数据治理,数据产品,数字化负责人等岗位走,当然也可以考虑很多企业行业,甚至咨询公司,金融企业相关的数据管理岗位。

毕竟除了互联网公司外,绝大部分行业的企业,没有真正意义上的数据分析部门,很多都是挂在业务部门里面,而绝大部分企业现阶段数字化的核心问题,往往是底层数据架构重构,数据口径统一,数据集成,数据资产开发等偏数据架构的问题。越往上走的数据总监,也需要更懂这方面的知识,最常见的,便是需要对数据中台的概念,功能模块,搭建方式,数据层级等有一个清晰和明确的方向和思路。
说完外功,再来看看数据分析专家的内功,在我看来,最重要的内功是心法。什么是心法,什么是懂分析,说到底就是结构化的思维能力,辩证的思考能力,具有逻辑性的归纳和总结能力。不知道大家读商学院的时候有没有这种感触,当时教授一直会强调critical thinking,慢慢我才发现思维体系的建立在未来的工作上受益匪浅。具体来说,懂分析包括三个层级:
心法:懂分析(逻辑能力)
LEVE1,问题定义清晰:不同的行业和业务场景,其需解决的问题具有差异化,能在理解业务的前提下,透过现象找到本质,清晰的定义问题,理解问题背后的原因。

LEVE2,框架逻辑严密:能够形成完整的分析方法路和逻辑思路,能基于严密的分析逻辑,将数据层层推演,以解构问题背后的原因。

LEVE3,思考全面系统:需要有化整为零和化零为整的能力,即演绎和归纳的能力,能够将复杂的问题进行分解,也能将零散的问题总结出全面的规律,从动态的角度,系统性思考为决策提供支出,

懂分析也分为三个层级,最高的等级是懂的如何进行系统性全面性的思考,麦肯锡有一个很有名的MECE原则,便是提倡建立一个“相互独立,完全穷尽”的思考框架,能够用逻辑树,对核心问题进行解构,排序优先顺序,并针对核心议题进行分析和建议。而麦肯锡的“七部成诗法”,便是能够帮助大家掌握商业推理逻辑的基础技能方法。

逻辑思维能力和系统性的思维框架,对于数据分析专家来说,尤为重要。因为数据分析专家需要站在高管或业务的视角,建立更为全局和系统的框架去拆解问题,并通过数据进行验证,归纳和预测,如果缺乏系统性的思维框架,数据分析师便于同样走入经验主义的思维定式,那便很难为高管和业务提供更多深层次的决策建议。
气功:懂汇报(沟通能力)
内功的另一个方面是气功,相比于心法,这种锻炼某一方向的内力,气功更具有普适性。如果说逻辑思维体系对数据分析师尤为重要,那沟通能力对几乎所有的工作岗位都非常重要。

优秀的沟通能力,能让你的领导成为你的Sponsor。具体来说,懂汇报也分为三个层面:

LEVE1,明确分析结论:基于数据分析的结果为基础,能及时准确有效的说明分析结论,能基于分析结论进一步提供判断和建议,帮助业务落地相关执行策略。

LEVE2,高效表达沟通:能对分析结论进行归纳与总结,能形成完整的分析报告,具有较强的汇报演讲能力,能言简意赅,突出重点,帮助业务方高效理解汇报重点。

LEVE3,数据解决方案:能选择合适的工具形成自主化的分析看板,通过对业务方的培训,能够让业务方基于数据产品解决方案,形成自循环的监控,分析,决策,执行的循环。

对于数据分析专家来说,最高层级的沟通技能,是如何建立框架化的简洁的分析看板,培训业务能够自主的进行监控,分析,决策,执行。但从更普适性的角度来看,在锻炼沟通能力上,一般至少有两个维度的提高方向。

一是如何更加高效的沟通。有一个非常有名的电梯实验,要求三十秒阐述清楚汇报内容。有些企业对于刚入职的数据分析师,会培养他们如何用一张PPT讲清楚整个报告的核心内容。这些训练方式其实都是殊途同归,数据分析不是写毕业论文,首先应该阐述的是核心的结论,而非娓娓道来分析的背景和思路,这样会让领导觉得分析师缺乏抓重点,揪关键的能力。

二是如何更有趣的沟通。并非所有的报告都是需要简单高效,譬如一些业务培训之类的沟通,需要的是如何让听众引人入胜。而按照逻辑思维的方式进行讲述,容易让你昏昏欲睡。如何通过“故事框架”性方式进行讲述,是一个有必要的锻炼的沟通能力,这里可以推荐一本《金字塔原理》的书籍,教会我们如何从“归纳”金字塔形成”故事“金字塔。”

一个数据分析专家,就像一名绝世剑客,只有修炼好外功和内功,才能执剑天涯,快意江湖,走出一条差异化的道路。这次我们解构了优秀剑客的入门总纲,未来有机会,可以深入探讨武功秘籍,如何提高“招式”、“兵器”、“心法”和“气功”,这是四个方面的能力。譬如,如何锻炼自己的商业SENSE,如何建立行业分析框架,如何培养商业推理逻辑能力,如何培养数据底层架构和治理能力等等。

最后送大家一句话:
如果你想成为一名优秀的数据分析专家,一定要具备扎实的技术功底,站在企业/行业的视角,用数据的思维,呈现分析的结论,想最高领导人所想,思最高领导人所思。无论在思想格局上还是商业思维上都要有独到的见解,这样才有可能突破重重关卡,往上晋升为“专家”行列。文章来源地址https://www.toymoban.com/news/detail-860605.html

到了这里,关于数据分析专家能力模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 云计算与大数据分析的架构设计原则

    随着互联网的普及和人们对信息的需求不断增加,数据的产生和存储已经超越了传统的存储设备和方式的容量。大数据技术涉及到的领域非常广泛,包括网络流量、社交媒体、物联网、人脸识别、自动驾驶等等。同时,随着计算能力的提升和云计算的发展,云计算与大数据分

    2024年04月09日
    浏览(81)
  • 数据分析基础-数据可视化02-不同数据类型的可视化概念及原则

    将数据空间映射到颜色空间。 数据可以被划分为两个主要的数据空间:连续数据和分类数据。这两种数据空间有不同的特点和适用的分析方法。 连续数据(Continuous Data): 连续数据是指可以在某个范围内取任何数值的数据。在连续数据空间中,数据点之间存在无限多的可能

    2024年02月11日
    浏览(46)
  • 怎么提升数据分析能力?——功法篇(下)

    先来复习一下上篇提到的3个疑问: 为什么我做出来的分析总觉得没有别人的那么高级? 老板为什么总说我的分析“太浅了”? 数据分析师每天的工作就是取数做需求? 看完上篇讲的金字塔原理,如果你还有疑问,不妨再认识一下另一个数据分析的无上功法: 自从某一次马

    2024年01月23日
    浏览(39)
  • 跨界协作:借助gRPC实现Python数据分析能力的共享

    gRPC是一个高性能、开源、通用的远程过程调用(RPC)框架,由Google推出。 它基于HTTP/2协议标准设计开发,默认采用Protocol Buffers数据序列化协议,支持多种开发语言。 在gRPC中,客户端可以像调用本地对象一样直接调用另一台不同的机器上服务端应用的方法,使得您能够更容

    2024年02月19日
    浏览(37)
  • JAVA终极对比Python:分析和比较处理大数据的能力

    Java 是一种编译型语言,代码在运行之前首先需要被编译成字节码,然后在Java虚拟机(JVM)上运行。这通常可以提高执行速度。 Python 是一种解释型语言,代码在运行时由解释器逐行解释执行。这使得Python的启动速度相对较慢。 Java 虚拟机(JVM)可以执行即时编译(Just-In-Ti

    2024年01月18日
    浏览(46)
  • 利用读时建模等数据分析能力,实现网络安全态势感知的落地

    摘要:本文提出一种基于鸿鹄数据平台的网络安全态势感知系统,系统借助鸿鹄数据平台读时建模、时序处理、数据搜索等高效灵活的超大数据存储和分析处理能力,支持海量大数据存储、分类、统计到数据分析、关联、预测、判断的网络安全态势感知能力需求。以安全大数

    2024年02月13日
    浏览(38)
  • 【数据结构】算法的复杂度分析:让你拥有未卜先知的能力

    👑专栏内容:数据结构 ⛪个人主页:子夜的星的主页 💕座右铭:日拱一卒,功不唐捐 一个程序能用很多不同的算法来实现,那么到底那种算法是效率最高的呢? 对此我们有两种方法: 第一种是事后统计法,既在编写之后,通过计时,比较不同算法编写的程序的运行时间,

    2024年02月03日
    浏览(51)
  • 一、课程设计目的与任务《数据结构》课程设计是为训练学生的数据组织能力和提高程序设计能力而设置的增强实践能力的课程。目的:学习数据结构课程,旨在使学生学会分析研究数据对象的特性,学会数据的组织方法,以

    一、课程设计目的与任务 《数据结构》课程设计是为训练学生的数据组织能力和提高程序设计能力而设置的增强实践能力的课程。目的:学习数据结构课程,旨在使学生学会分析研究数据对象的特性,学会数据的组织方法,以便选择合适的数据的逻辑结构和存储结构以及相应

    2024年02月21日
    浏览(71)
  • SPF9139全力适配ios16与鸿蒙3.0,超实用数据提取、分析、恢复能力UP!

    ​ 如今,群聊已成为人们必不可少的沟通窗口 家人群,好友群,班级群 粉丝群,交友群,工作群 …… 各类群聊铺天盖地般涌来的同时 也有一些群聊沦为了 赌博、传播淫秽视频 、发表不当言论 等违法犯罪行为滋生之地 与此同时 嫌疑人手机中的群消息往往十分琐碎繁杂 办

    2024年02月13日
    浏览(43)
  • 海山数据库(He3DB)原理剖析:浅析Doris跨源分析能力

    Doris多数据源功能演进 Doris的生态近年来围绕湖仓分析做了较多工作,Doris一直在积极拓宽大数据生态的OLAP分析市场,Doris2.0之后为了满足湖仓分析场景,围绕multi-catalog、数据缓存、容错、pipeline资源管理等做了不少改进。 首先在multi-catalog之前,Doris访问Hive表需要单表映射或

    2024年04月12日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包