论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》

这篇具有很好参考价值的文章主要介绍了论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction

Targetdiff
ICLR 2023
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能

1、Contributions

*一个端到端的框架,用于在蛋白靶点条件下生成分子,该框架明确考虑了蛋白质和分子在三维空间中的物理相互作用。
*就我们所知,这是针对靶向药物设计的第一个概率扩散公式,其中训练和采样过程以非自回归和SE(3)-等变的方式对齐,这得益于移位中心操作和等变GNN。
*提出了几个新的评估指标和额外的见解,使我们能够在许多不同的维度上评估模型生成的分子。实证结果证明了我们的模型优于另外两个代表性基准模型。
*提出了一种基于我们的框架评估生成分子质量的有效方法,其中模型可以作为评分函数来帮助排名,或者作为无监督特征提取器来提高结合亲和力预测的准确性。

2、Problem definition

A protein binding site is represented as a set of atoms P = ( x P ( i ) , v P ( i ) ) i = 1 N P P = {(x^{(i)}_P , v^{(i)}_P )}^{N_P}_{i=1} P=(xP(i),vP(i))i=1NP, where N P N_P NP is the number of protein atoms, x P ∈ R 3 x_P ∈ R^3 xPR3 represents the 3D coordinates of the atom, and v P ∈ R N f v_P ∈ R^{N_f} vPRNf represents protein atom features such as element types and amino acid types. Our goal is to generate binding molecules M = ( x L ( i ) , v L ( i ) ) i = 1 L M M = {(x^{(i)}_L , v^{(i)}_L )}^{L_M}_{i=1} M=(xL(i),vL(i))i=1LM conditioned on the protein target. For brevity, we denote molecules as M = [x, v], where [·, ·] is the concatenation operator and x ∈ R M × 3 x ∈ R^{M×3} xRM×3 and v ∈ R M × K v ∈ R^{M×K} vRM×K denote atom Cartesian coordinates and one-hot atom types respectively.

3、Molecular diffusion process

use a Gaussian distribution N N N to model continuous atom coordinates x and a categorical distribution C to model discrete atom types v. The atom types are constructed as a one-hot vector containing information such as element types and membership in an aromatic ring. We formulate the molecular distribution as a product of atom coordinate distribution and atom type distribution. At each time step t, a small Gaussian noise and a uniform noise across all categories are added to atom coordinates and atom types separately, according to a Markov chain with fixed variance schedules β1, . . . , βT (K为k维的平均噪声向量)(实际上x,v的调度不一致):
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
Denoting α t = 1 − β t αt = 1 − β_t αt=1βt and 论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
a desirable property of the diffusion process is to calculate the noisy data distribution q ( M t ∣ M 0 ) q(M_t|M_0) q(MtM0) of any time step in closed-form(用闭合形式直接求出每个时间步时数据分布):论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
Using Bayes theorem, the normal posterior of atom coordinates and categorical posterior of atom types can both be computed in closed-form(通过贝叶斯公式求出后验分布):
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能

4、Molecular generative process

The generative process, on reverse, will recover the ground truth molecule M0 from the initial noise MT , and we approximate the reverse distribution with a neural network parameterized by θ(t、P已知,Mt也已知,求μθ 、cθ):
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
There are different ways to parameterize μ θ ( [ x t , v t ] , t , P ) μ_θ([x_t, v_t], t, P) μθ([xt,vt],t,P) and c θ ( [ x t , v t ] , t , P ) c_θ([x_t, v_t], t, P) cθ([xt,vt],t,P). Here, we choose to let the neural network predict [ x 0 , v 0 ] [x_0, v_0] [x0,v0] and feed it through equation 4 to obtain μ θ μ_θ μθ and c θ c_θ cθ which define the posterior distributions. we model the interaction between the ligand molecule atoms and the protein atoms with a SE(3)-Equivariant GNN:
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
At the l-th layer, the atom hidden embedding h(原子隐藏嵌入) and coordinates x(原子的坐标) are updated alternately as follows:
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
where d i j = ‖ x i − x j ‖ d_{ij} = ‖x_i − x_j‖ dij=xixj is the euclidean distance(原子间欧几里德距离) between two atoms i and j and eij is an additional feature(两两原子间连接特征,可以视为邻接矩阵来描述原子之间的联系或连接类型) indicating the connection is between protein atoms, ligand atoms or protein atom and ligand atom. 1mol is the ligand molecule mask since we do not want to update protein atom coordinates. The initial atom hidden embedding h 0 h^0 h0 is obtained by an embedding layer that encodes the atom information. The final atom hidden embedding h L h^L hL is fed into a multi-layer perceptron and a softmax function to obtain ˆ v 0 ˆ v_0 ˆv0. Since ˆ x 0 ˆ x_0 ˆx0 is rotation equivariant to x t x_t xt and it is easy to see x t − 1 x_{t−1} xt1 is rotation equivariant to x 0 x_0 x0 according to equation 4, we achieve the desired equivariance for Markov transition.
注:the likelihood p θ ( M 0 ∣ P ) p_θ(M_0|P) pθ(M0P) should be invariant to translation and rotation of the protein-ligand complex. Denoting the SE(3)-transformation as T g T_g Tg, we could achieve invariant likelihood w.r.t T g T_g Tg on the protein-ligand complex: p θ ( T g ( M 0 ∣ P ) ) = p θ ( M 0 ∣ P ) p_θ(T_g(M_0|P)) = p_θ(M_0|P) pθ(Tg(M0P))=pθ(M0P) if we shift the Center of Mass (CoM) of protein atoms to zero and parameterize the Markov transition p ( x t − 1 ∣ x t , x P ) p(x_{t−1}|x_t, x_P ) p(xt1xt,xP) with an SE(3)-equivariant network.

5、Training

The combination of q and p is a variational auto-encoder (Kingma and Welling, 2013). The model can be trained by optimizing the variational bound on negative log likelihood. For the atom coordinate loss, since q ( x t − 1 ∣ x t , x 0 ) q(x_{t−1}|x_t, x_0) q(xt1xt,x0) and p θ ( x t − 1 ∣ x t ) p_θ(x_{t−1}|x_t) pθ(xt1xt) are both Gaussian distributions, the KL-divergence can be written in closed form:
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
where 论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
and C C C is a constant. In practice, training the model with an unweighted MSE loss (set γ t γ_t γt = 1) could also achieve better performance as Ho et al. (2020) suggested. For the atom type loss, we can directly compute KL-divergence of categorical distributions as follows:
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
The final loss is a weighted sum of atom coordinate loss and atom type loss: L = L t − 1 ( x ) + λ L t − 1 ( v ) L = L^{(x)}_{t−1} + λL^{(v)}_{t−1} L=Lt1(x)+λLt1(v). We summarize the overall training and sampling procedure of TargetDiff in Appendix E.
(1) training
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
(2) sampling
At the l-th layer, we dynamically construct the protein-ligand complex as a k-nearest neighbors (knn) graph based on known protein atom coordinates and current ligand atom coordinates, which is the output of the l − 1-th layer. We choose k = 32 in our experiments. The protein atom features include chemical elements, amino acid types and whether the atoms are backbone atoms. The ligand atom types are one-hot vectors consisting of the chemical element types and aromatic information. The edge features are the outer products of distance embedding and bond types, where we expand the distance with radial basis functions located at 20 centers between 0 ̊ A and 10 ̊ A and the bond type is a 4-dim one-hot vector indicating the connection is between protein atoms, ligand atoms, protein-ligand atoms or ligand-protein atoms.
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能

6、Experiments

Data:Crossocked2022
Baseline:liGAN、AR、Pocket2Mol、GraphBP
Targetiff:Our model contains 9 equivariant layers described in equation 7, where fh and fx are specifically implemented as graph attention layers with 16 attention heads and 128 hidden features. We first decide on the number of atoms for sampling by drawing a prior distribution estimated from training complexes with similar binding pocket sizes. After the model finishes the generative process, we then use OpenBabel (O’Boyle et al., 2011) to construct the molecule from individual atom coordinates as done in AR and liGAN.

7、Results

论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能

8、Target Binding Affinity

We first establish the connection between unsupervised generative models and binding affinity ranking / prediction. Under our parameterization, the network predicts the denoised [ ˆ x 0 , ˆ v 0 ] [ˆ x_0, ˆ v_0] [ˆx0,ˆv0]. Given the protein-ligand complex, we can feed φ θ φ_θ φθ with [ x 0 , v 0 ] [x_0, v_0] [x0,v0] while freezing the x-update branch (i.e. only atom hidden embedding h h h is updated), and we could finally obtain h L h^L hL and ˆ v 0 ˆ v_0 ˆv0:
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能
Our assumption is that if the ligand molecule has a good binding affinity to protein, the flexibility of atom types should be low, which could be reflected in the entropy of ˆ v 0 ˆ v_0 ˆv0(v_ent). Therefore, it can be used as a scoring function to help ranking, whose effectiveness is justified in the experiments. In addition, hL also includes useful global information. We found the binding affinity ranking performance can be greatly improved by utilizing this feature with a simple linear transformation.
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三维药物分子设计,人工智能文章来源地址https://www.toymoban.com/news/detail-860669.html

到了这里,关于论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CVPR 2023 | 风格迁移论文3篇简读,视觉AIGC系列

    内容相似度损失(包括特征和像素相似度)是逼真和视频风格迁移中出现伪影的主要问题。本文提出了一个名为CAP-VSTNet的新框架,包括一个新的可逆残差网络(reversible residual network)和一个无偏线性变换模块,用于多功能风格转移。这个可逆残差网络不仅可以保留内容关联性

    2024年02月11日
    浏览(45)
  • 基于 Transformation-Equivariant 的自动驾驶 3D 目标检测

    论文地址:https://arxiv.org/abs/2211.11962 论文代码:https://github.com/hailanyi/TED 三维场景中的物体分布有不同的方向。普通探测器不明确地模拟旋转和反射变换的变化。需要大的网络和广泛的数据增强来进行鲁棒检测。 equivariant networks 通过在多个变换点云上应用共享网络显式地模拟

    2024年02月09日
    浏览(43)
  • 《论文阅读21》Equivariant Multi-View Networks

    研究领域:计算机视觉 | 多视角数据处理中实现 等变性 论文:Equivariant Multi-View Networks ICCV 2019 论文链接 视频链接 在计算机视觉中,模型在不同视角下对数据(例如,点云、图像等)对数据的变化具有一定的响应性。为了使模型能够更好地适应这种变化,不是仅仅对某个特定

    2024年02月10日
    浏览(48)
  • 论文笔记:E(n) Equivariant Graph Neural Networks

            本文介绍了一种新模型来学习与旋转、平移、反射和排列等变的图神经网络,称为 E(n)-等变图神经网络 (EGNN)。          与现有方法相比,EGNN不需要在中间层中计算昂贵的高阶表示,同时仍能获得有竞争力或更好的性能。 此外,虽然现有方法仅限于 3 维空间的

    2023年04月08日
    浏览(41)
  • 《3D Diffusion Policy》论文阅读

    本文仅是个人对该文章的阅读总结,并不能全篇概括作者的精华,还需大家详细阅读原文 --------------------------------------------------------------------------------------------------------------------------------- 问题: 模仿学习为教授机器人灵巧技能提供了一种高效途径,但是学习复杂的、具有普

    2024年04月11日
    浏览(35)
  • [读论文][backbone]Knowledge Diffusion for Distillation

    DiffKD 摘要 The representation gap between teacher and student is an emerging topic in knowledge distillation (KD). To reduce the gap and improve the performance, current methods often resort to complicated training schemes, loss functions, and feature alignments, which are task-specific and feature-specific. In this paper, we state that the essence of the

    2024年02月08日
    浏览(56)
  • Multi Diffusion: Fusing Diffusion Paths for Controlled Image Generation——【论文笔记】

    本文发表于ICML 2023 论文官网:MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation           文本到图像生成模型已经具有合成高质量和多样化图像的能力,但是由于难以为用户提供对生成内容的直观控制,因此将文本到图像模型部署到现实世界的应用程序仍然具有挑战

    2024年02月02日
    浏览(43)
  • 论文阅读--Diffusion Models for Reinforcement Learning: A Survey

    一、论文概述 本文主要内容是关于在强化学习中应用扩散模型的综述。文章首先介绍了强化学习面临的挑战,以及扩散模型如何解决这些挑战。接着介绍了扩散模型的基础知识和在强化学习中的应用方法。然后讨论了扩散模型在强化学习中的不同角色,并对其在多个应用领域

    2024年03月20日
    浏览(55)
  • 论文阅读《Hierarchical Aggregation for 3D Instance Segmentation》

    Hierarchical Aggregation for 3D Instance Segmentation是一个用于实例分割的方法,他主要利用了点以及点集之间的空间关系,以此进行实例分割。大概步骤如下: 首先进行低带宽点汇集得到初步的实例以避免过度分割 之后进行动态带宽集合汇集以得到完整的实例 引入实例内网络进行去

    2024年02月04日
    浏览(50)
  • 读论文--Token Merging for Fast Stable Diffusion(用于快速Diffusion模型的tome技术)

    摘要 The landscape of image generation has been forever changed by open vocabulary diffusion models. However, at their core these models use transformers, which makes generation slow. Better implementations to increase the throughput of these transformers have emerged, but they still evaluate the entire model. In this paper, we instead speed up diffusion m

    2024年02月09日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包