字节跳动高频题目(1)

这篇具有很好参考价值的文章主要介绍了字节跳动高频题目(1)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 3,1,42,200,15

121,128,49,25,88

5,146,70,2,4

21,33,55,27,560

11,20,31,53,236

300,26,215,279,438

135,148,9,169,76

22,101,14,54,56

72,206,152,80,39

46,62,104,122,179

3. Longest Substring Without Repeating Characters

Medium

Given a string s, find the length of the longest substring without repeating characters.

Example 1:

Input: s = "abcabcbb"
Output: 3
Explanation: The answer is "abc", with the length of 3.
class Solution {
    public int lengthOfLongestSubstring(String s) {
        Set<Character> set = new HashSet<>();
        char[] ch = s.toCharArray();
        int left = 0;
        int count = 0;
        int ans = 0;
        for(int right = 0; right < ch.length; right++){
            if(!set.contains(ch[right])){
                set.add(ch[right]);
                count = count + 1;
                ans = Math.max(ans, count);
            }else{
                while(set.contains(ch[right])){
                    set.remove(ch[left]);
                    left++;
                    count--;
                }
                set.add(ch[right]);
                count++;
            }
        }
        return ans;
    }
}
class Solution {
    public int lengthOfLongestSubstring(String s) {
        int[] ch = new int[128];
        for(int i=0;i<128;i++){
            ch[i]=-1;
        }
        int ans=0;
        int st=0;
        for(int i=0;i<s.length();i++){
            int c = s.charAt(i);
            if(ch[c]!=-1){
                st=Math.max(st,ch[c]);
            }
            ans=Math.max(ans,i-st+1);
            ch[c]=i+1;
        }
        return ans;
    }
}

1. Two Sum

Easy

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>();
        for (int i = 0; i < nums.length; ++i) {
            if (hashtable.containsKey(target - nums[i])) {
                return new int[]{hashtable.get(target - nums[i]), i};
            }
            hashtable.put(nums[i], i);
        }
        return new int[0];
    }
}

42. Trapping Rain Water

Hard

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.

class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int left = 0, right = height.length - 1;
        int leftMax = 0, rightMax = 0;
        while (left < right) {
            leftMax = Math.max(leftMax, height[left]);
            rightMax = Math.max(rightMax, height[right]);
            if (height[left] < height[right]) {
                ans += leftMax - height[left];
                ++left;
            } else {
                ans += rightMax - height[right];
                --right;
            }
        }
        return ans;
    }
}

200. Number of Islands

Medium

Given an m x n 2D binary grid grid which represents a map of '1's (land) and '0's (water), return the number of islands.

An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

class Solution {
    void dfs(char[][] grid, int r, int c) {
        int nr = grid.length;
        int nc = grid[0].length;

        if (r < 0 || c < 0 || r >= nr || c >= nc || grid[r][c] == '0') {
            return;
        }

        grid[r][c] = '0';
        dfs(grid, r - 1, c);
        dfs(grid, r + 1, c);
        dfs(grid, r, c - 1);
        dfs(grid, r, c + 1);
    }

    public int numIslands(char[][] grid) {
        if (grid == null || grid.length == 0) {
            return 0;
        }

        int nr = grid.length;
        int nc = grid[0].length;
        int num_islands = 0;
        for (int r = 0; r < nr; ++r) {
            for (int c = 0; c < nc; ++c) {
                if (grid[r][c] == '1') {
                    ++num_islands;
                    dfs(grid, r, c);
                }
            }
        }

        return num_islands;
    }
}

15. 3Sum

Medium

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != ji != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> ans = new ArrayList<>();
        Arrays.sort(nums);
        for(int i = 0; i < nums.length-2; i++){
            if(nums[i] + nums[i + 1] + nums[i + 2] > 0){
                break;
            }
            if(nums[i] + nums[nums.length - 1] + nums[nums.length -2] < 0){
                continue;
            }
            if(i > 0 && nums[i] == nums[i - 1]){
                continue;
            }
            int j = i + 1;
            int k = nums.length - 1;
            while(j < k){
                if(nums[i] + nums[j] + nums[k] > 0){
                    k--;
                }else if(nums[i] + nums[j] + nums[k] < 0){
                    j++;
                }else{
                    List<Integer> list = new ArrayList<>();
                    list.add(nums[i]);
                    list.add(nums[j]);
                    list.add(nums[k]);
                    ans.add(list);
                    j++;
                    k--;
                    while(j < k && nums[j] == nums[j -1]){
                        j++;
                    }
                    while(j < k && nums[k] == nums[k + 1]){
                        k--;
                    }
                }
            }
        }
        return ans;
    }
}

121. Best Time to Buy and Sell Stock

Easy

You are given an array prices where prices[i] is the price of a given stock on the ith day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Example 1:

Input: prices = [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length == 1) {
            return 0;
        }
        int[][] dp = new int[prices.length][2];//dp[i][0]表示第i天持有股票的最大收益,dp[i][1]表示第i天不持有股票的最大收益
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0],  -prices[i]);//分为是不是今天买入
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);//分为是不是今天买
        }
        return dp[prices.length - 1][1];
    }
}
class Solution {
    public int maxProfit(int[] prices) {
        int cost = Integer.MAX_VALUE, profit = 0;
        for (int price : prices) {
            cost = Math.min(cost, price);
            profit = Math.max(profit, price - cost);
        }
        return profit;
    }
}

128. Longest Consecutive Sequence

Medium

Given an unsorted array of integers nums, return the length of the longest consecutive elements sequence.

You must write an algorithm that runs in O(n) time.

Example 1:

Input: nums = [100,4,200,1,3,2]
Output: 4
Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]. Therefore its length is 4.

 

class Solution {
    public int longestConsecutive(int[] nums) {
        Set<Integer> numSet = new HashSet<Integer>();
        for (int num : nums) {
            numSet.add(num);
        }

        int longestLength = 0;

        for (int num : numSet) {
            if (!numSet.contains(num - 1)) {
                int currentNum = num;
                int currentLength = 1;

                while (numSet.contains(currentNum + 1)) {
                    currentNum += 1;
                    currentLength += 1;
                }
                longestLength = Math.max(longestLength, currentLength);
            }
        }

        return longestLength;
    }
}

49. Group Anagrams

Solved

Medium

Topics

Companies

Given an array of strings strs, group the anagrams together. You can return the answer in any order.

An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.

 

class Solution {
    public List<List<String>> groupAnagrams(String[] strs) {
        Map<String, List<String>> map = new HashMap<String, List<String>>();
        for (String str : strs) {
            char[] array = str.toCharArray();
            Arrays.sort(array);
            String key = new String(array);
            List<String> list = map.getOrDefault(key, new ArrayList<String>());
            list.add(str);
            map.put(key, list);
        }
        return new ArrayList<List<String>>(map.values());
    }
}
class Solution {
    public List<List<String>> groupAnagrams(String[] strs) {
        Map<String, List<String>> map = new HashMap<String, List<String>>();
        for (String str : strs) {
            int[] counts = new int[26];
            int length = str.length();
            for (int i = 0; i < length; i++) {
                counts[str.charAt(i) - 'a']++;
            }
            // 将每个出现次数大于 0 的字母和出现次数按顺序拼接成字符串,作为哈希表的键
            StringBuffer sb = new StringBuffer();
            for (int i = 0; i < 26; i++) {
                if (counts[i] != 0) {
                    sb.append((char) ('a' + i));
                    sb.append(counts[i]);
                }
            }
            String key = sb.toString();
            List<String> list = map.getOrDefault(key, new ArrayList<String>());
            list.add(str);
            map.put(key, list);
        }
        return new ArrayList<List<String>>(map.values());
    }
}

 

25. Reverse Nodes in k-Group

Hard

Topics

Companies

Given the head of a linked list, reverse the nodes of the list k at a time, and return the modified list.

k is a positive integer and is less than or equal to the length of the linked list. If the number of nodes is not a multiple of k then left-out nodes, in the end, should remain as it is.

You may not alter the values in the list's nodes, only nodes themselves may be changed.

class Solution {
    public ListNode reverseKGroup(ListNode head, int k) {
        ListNode hair = new ListNode(0);
        hair.next = head;
        ListNode pre = hair;

        while (head != null) {
            ListNode tail = pre;
            // 查看剩余部分长度是否大于等于 k
            for (int i = 0; i < k; ++i) {
                tail = tail.next;
                if (tail == null) {
                    return hair.next;
                }
            }
            ListNode nex = tail.next;
            ListNode[] reverse = myReverse(head, tail);
            head = reverse[0];
            tail = reverse[1];
            // 把子链表重新接回原链表
            pre.next = head;
            tail.next = nex;
            pre = tail;
            head = tail.next;
        }

        return hair.next;
    }

    public ListNode[] myReverse(ListNode head, ListNode tail) {
        ListNode prev = tail.next;
        ListNode p = head;
        while (prev != tail) {
            ListNode nex = p.next;
            p.next = prev;
            prev = p;
            p = nex;
        }
        return new ListNode[]{tail, head};
    }
}

 

88. Merge Sorted Array

Easy

You are given two integer arrays nums1 and nums2, sorted in non-decreasing order, and two integers m and n, representing the number of elements in nums1 and nums2 respectively.

Merge nums1 and nums2 into a single array sorted in non-decreasing order.

The final sorted array should not be returned by the function, but instead be stored inside the array nums1. To accommodate this, nums1 has a length of m + n, where the first m elements denote the elements that should be merged, and the last n elements are set to 0 and should be ignored. nums2 has a length of n.

Example 1:

Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]
Explanation: The arrays we are merging are [1,2,3] and [2,5,6].
The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.
class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = 0, p2 = 0;
        int[] sorted = new int[m + n];
        int cur;
        while (p1 < m || p2 < n) {
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
}

 

5. Longest Palindromic Substring

Medium

Given a string s, return the longest 

palindromic substring in s.

class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.length() < 1) {
            return "";
        }
        int start = 0, end = 0;
        for (int i = 0; i < s.length(); i++) {
            int len1 = expandAroundCenter(s, i, i);
            int len2 = expandAroundCenter(s, i, i + 1);
            int len = Math.max(len1, len2);
            if (len > end - start) {
                start = i - (len - 1) / 2;
                end = i + len / 2;
            }
        }
        return s.substring(start, end + 1);
    }

    public int expandAroundCenter(String s, int left, int right) {
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            --left;
            ++right;
        }
        return right - left - 1;
    }
}

146. LRU Cache

Medium

Topics

Companies

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

  • LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
  • int get(int key) Return the value of the key if the key exists, otherwise return -1.
  • void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

class LRUCache {
    class Node{
        int key;
        int value;

        Node prev;
        Node next;

        Node(int key, int value){
            this.key= key;
            this.value= value;
        }
    }

    public Node[] map;
    public int count, capacity;
    public Node head, tail;
    
    public LRUCache(int capacity) {
        
        this.capacity= capacity;
        count= 0;
        
        map= new Node[10_000+1];
        
        head= new Node(0,0);
        tail= new Node(0,0);
        
        head.next= tail;
        tail.prev= head;
        
        head.prev= null;
        tail.next= null;
    }
    
    public void deleteNode(Node node){
        node.prev.next= node.next;
        node.next.prev= node.prev;       
        
        return;
    }
    
    public void addToHead(Node node){
        node.next= head.next;
        node.next.prev= node;
        node.prev= head;
        
        head.next= node;      
        
        return;
    }
    
    public int get(int key) {
        
        if( map[key] != null ){
            
            Node node= map[key];
            
            int nodeVal= node.value;
            
            deleteNode(node);
            
            addToHead(node);
            
            return nodeVal;
        }
        else
            return -1;
    }
    
    public void put(int key, int value) {
        
        if(map[key] != null){
            
            Node node= map[key];
            
            node.value= value;
            
            deleteNode(node);
            
            addToHead(node);
            
        } else {
            
            Node node= new Node(key,value);
            
            map[key]= node;
            
            if(count < capacity){
                count++;
                addToHead(node);
            } 
            else {
                
                map[tail.prev.key]= null;
                deleteNode(tail.prev);
                
                addToHead(node);
            }
        }
        
        return;
    }
    
}
public class LRUCache {
    class DLinkedNode {
        int key;
        int value;
        DLinkedNode prev;
        DLinkedNode next;
        public DLinkedNode() {}
        public DLinkedNode(int _key, int _value) {key = _key; value = _value;}
    }

    private Map<Integer, DLinkedNode> cache = new HashMap<Integer, DLinkedNode>();
    private int size;
    private int capacity;
    private DLinkedNode head, tail;

    public LRUCache(int capacity) {
        this.size = 0;
        this.capacity = capacity;
        // 使用伪头部和伪尾部节点
        head = new DLinkedNode();
        tail = new DLinkedNode();
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        DLinkedNode node = cache.get(key);
        if (node == null) {
            return -1;
        }
        // 如果 key 存在,先通过哈希表定位,再移到头部
        moveToHead(node);
        return node.value;
    }

    public void put(int key, int value) {
        DLinkedNode node = cache.get(key);
        if (node == null) {
            // 如果 key 不存在,创建一个新的节点
            DLinkedNode newNode = new DLinkedNode(key, value);
            // 添加进哈希表
            cache.put(key, newNode);
            // 添加至双向链表的头部
            addToHead(newNode);
            ++size;
            if (size > capacity) {
                // 如果超出容量,删除双向链表的尾部节点
                DLinkedNode tail = removeTail();
                // 删除哈希表中对应的项
                cache.remove(tail.key);
                --size;
            }
        }
        else {
            // 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部
            node.value = value;
            moveToHead(node);
        }
    }

    private void addToHead(DLinkedNode node) {
        node.prev = head;
        node.next = head.next;
        head.next.prev = node;
        head.next = node;
    }

    private void removeNode(DLinkedNode node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    private void moveToHead(DLinkedNode node) {
        removeNode(node);
        addToHead(node);
    }

    private DLinkedNode removeTail() {
        DLinkedNode res = tail.prev;
        removeNode(res);
        return res;
    }
}

 

22. Generate Parentheses

Medium

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> ans = new ArrayList<String>();
        backtrack(ans, new StringBuilder(), 0, 0, n);
        return ans;
    }

    public void backtrack(List<String> ans, StringBuilder cur, int open, int close, int max) {
        if (cur.length() == max * 2) {
            ans.add(cur.toString());
            return;
        }
        if (open < max) {
            cur.append('(');
            backtrack(ans, cur, open + 1, close, max);
            cur.deleteCharAt(cur.length() - 1);
        }
        if (close < open) {
            cur.append(')');
            backtrack(ans, cur, open, close + 1, max);
            cur.deleteCharAt(cur.length() - 1);
        }
    }
}

101. Symmetric Tree

Easy

Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).

class Solution {
    public boolean isSymmetric(TreeNode root) {
        return compare(root.left, root.right);
    }

    private boolean compare(TreeNode left, TreeNode right) {
        if (left == null && right == null) {
            return true;
        }
        if (left == null || right == null) {
            return false;
        }
        if (left.val != right.val) {
            return false;
        }
        return compare(left.right, right.left) && compare(left.left, right.right);
    }
}

14. Longest Common Prefix

Easy

Write a function to find the longest common prefix string amongst an array of strings.

If there is no common prefix, return an empty string "".文章来源地址https://www.toymoban.com/news/detail-861150.html

class Solution {
    public String longestCommonPrefix(String[] strs) {
        if (strs == null || strs.length == 0) {
            return "";
        }
        String prefix = strs[0];
        int count = strs.length;
        for (int i = 1; i < count; i++) {
            prefix = longestCommonPrefix(prefix, strs[i]);
            if (prefix.length() == 0) {
                break;
            }
        }
        return prefix;
    }

    public String longestCommonPrefix(String str1, String str2) {
        int length = Math.min(str1.length(), str2.length());
        int index = 0;
        while (index < length && str1.charAt(index) == str2.charAt(index)) {
            index++;
        }
        return str1.substring(0, index);
    }
}

到了这里,关于字节跳动高频题目(1)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分享一道字节跳动后端面试算法题

    题目: 给你一个字符串s,可以将任意一个字符转为任意一个小写字符,这个操作可有m次,问转化后的字符串中最长的相等子串长度。 案例: s=\\\"abcdac\\\" ,m=2,2次操作,可以转化为\\\"abcccc\\\" ,最长是4,返回4。 分析: 题目很好理解,但是如果对算法掌握不是很透彻或者是对滑动

    2024年02月16日
    浏览(44)
  • 【Java程序员面试专栏 数据结构】四 高频面试算法题:哈希表

    一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目,一个O(1)查找的利器哈希表,所以放到一篇Blog中集中练习 题目 解题思路 时间 空间 两数之和 辅助哈希 使用map存储出现过的值,key为值大小,v

    2024年02月22日
    浏览(59)
  • 字节跳动大数据容器化构建与落地实践

    动手点关注 干货不迷路 随着字节跳动旗下业务的快速发展,数据急剧膨胀,原有的大数据架构在面临日趋复杂的业务需求时逐渐显现疲态。而伴随着大数据架构向云原生演进的行业趋势,字节跳动也对大数据体系进行了云原生改造。本文将详细介绍字节跳动大数据容器化的

    2024年02月13日
    浏览(37)
  • 字节跳动开源其云原生数据仓库 ByConity

    动手点关注 干货不迷路 ‍ ByConity 是字节跳动开源的云原生数据仓库,它采用计算-存储分离的架构,支持多个关键功能特性,如计算存储分离、弹性扩缩容、租户资源隔离和数据读写的强一致性等。通过利用主流的 OLAP 引擎优化,如列存储、向量化执行、MPP 执行、查询优化

    2024年02月10日
    浏览(35)
  • 字节跳动云原生大数据平台运维管理实践

    云原生大数据是大数据平台新一代架构和运行形态。随着字节跳动内部业务的快速增长,传统大数据运维平台的劣势开始逐渐暴露,如组件繁多,安装运维复杂,与底层环境过度耦合;对业务方来说缺少开箱即用的日志、监控、告警功能等。在此背景下,我们进行了一系列云

    2024年02月11日
    浏览(37)
  • 字节跳动AB实验经验分享:企业如何构建数据驱动的实验文化?

    更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 近日,CCF TF 举办了第 123 期分享活动,本期主题为“用户体验工程”。 CCF TF 是中国计算机学会为企业界计算机专业人士创建的企业间常态化合作交流平台,本期分享邀请到了来自火

    2024年02月05日
    浏览(63)
  • 火山引擎 DataLeap:揭秘字节跳动业务背后的分布式数据治理思路

    动手点关注 干货不迷路 导读:经过十多年的发展, 数据治理 在传统行业以及新兴互联网公司都已经产生落地实践。字节跳动也在探索一种分布式的数据治理方式。本篇内容来源于 火山引擎 超话数据直播活动的回顾,将从以下四个部分展开分享: 字节的挑战与实践 数据治

    2023年04月10日
    浏览(47)
  • 字节跳动 EB 级 Iceberg 数据湖的机器学习应用与优化

    深度学习的模型规模越来越庞大,其训练数据量级也成倍增长,这对海量训练数据的存储方案也提出了更高的要求:怎样更高性能地读取训练样本、不使数据读取成为模型训练的瓶颈,怎样更高效地支持特征工程、更便捷地增删和回填特征。本文将介绍字节跳动如何通过 Ic

    2024年02月15日
    浏览(50)
  • 演讲预告|字节跳动云原生大数据发展、AIGC 新引擎、运维管理实践

    出品人:李亚坤|火山引擎云原生计算技术负责人 专题简介: 大数据已成为企业数字化转型中, 支撑企业经营和业绩增长的主要手段之一。通过升级云原生架构,可以为大数据在弹性、多租户、敏捷开发、降本增效、安全合规、容灾和资源调度等方向上带来优势。传统的大数

    2024年02月11日
    浏览(38)
  • 数据结构课程设计题目——链表综合算法设计、带头双向循环链表、插入、显示、删除、修改、排序

      课程设计题目1–链表综合算法设计   一、设计内容   已知简单的人事信息系统中职工记录包含职工编号(no)、职工姓名(name)、部门名称(depname)、职称(title)和工资数(salary)等信息(可以增加其他信息),设计并完成一个简单的人事信息管理系统,要求完成但不

    2024年02月08日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包