基础环境:wsl2安装Ubuntu22.04 + miniconda

这篇具有很好参考价值的文章主要介绍了基础环境:wsl2安装Ubuntu22.04 + miniconda。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

服务器相关信息:

Thinkpad p1 gen5 64G 2T 3080ti,自带的有nvidia-smi显卡驱动。

使用wsl2安装Ubuntu22.04 + miniconda

目标:安装gpu版本的PyTorch2.1.2(torch2.1.2/cu117 + torchvision0.16.2/cu117)
处理器	12th Gen Intel(R) Core(TM) i9-12900H   2.50 GHz
机带 RAM	64.0 GB (63.7 GB 可用)
系统类型	64 位操作系统, 基于 x64 的处理器
显卡: 3080TI
版本	Windows 11 专业版
版本	23H2
安装日期	‎2024/‎4/‎15
操作系统版本	22631.3447
体验	Windows Feature Experience Pack 1000.22688.1000.0

$ nvidia-smi
Fri Apr 19 09:15:30 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01              Driver Version: 552.22         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 ...    On  |   00000000:01:00.0 Off |                  N/A |
| N/A   47C    P0             26W /   95W |       0MiB /  16384MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

cuda环境搭建

1、CUDA Toolkit 11.7 Update 1 Downloads
下载地址:https://developer.nvidia.com/cuda-11-7-1-download-archive

基础环境:wsl2安装Ubuntu22.04 + miniconda,pytorch,人工智能,python

$ wget https://developer.download.nvidia.com/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run
--2024-04-19 09:19:29--  https://developer.download.nvidia.com/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run
Resolving developer.download.nvidia.com (developer.download.nvidia.com)... 152.199.39.144
Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|152.199.39.144|:443... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://developer.download.nvidia.cn/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run [following]
--2024-04-19 09:19:29--  https://developer.download.nvidia.cn/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run
Resolving developer.download.nvidia.cn (developer.download.nvidia.cn)... 36.153.62.131, 36.153.62.132, 36.153.62.130, ...
Connecting to developer.download.nvidia.cn (developer.download.nvidia.cn)|36.153.62.131|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 3524358811 (3.3G) [application/octet-stream]
Saving to: ‘cuda_11.7.1_515.65.01_linux.run’

cuda_11.7.1_515.65.01_linux.run         100%[=============================================================================>]   3.28G  28.4MB/s    in 92s

2024-04-19 09:21:03 (36.6 MB/s) - ‘cuda_11.7.1_515.65.01_linux.run’ saved [3524358811/3524358811]

安装依赖库文件
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
sudo apt-get -y install  libfreeimage3 libfreeimage-dev


~$gcc --version
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

~$ ls
cuda_11.7.1_515.65.01_linux.run
~$ sudo sh cuda_11.7.1_515.65.01_linux.run
===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-11.7/

Please make sure that
 -   PATH includes /usr/local/cuda-11.7/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-11.7/lib64, or, add /usr/local/cuda-11.7/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.7/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 515.00 is required for CUDA 11.7 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run --silent --driver

Logfile is /var/log/cuda-installer.log

最后的summary最重要的是这两句:

Please make sure that
 -   PATH includes /usr/local/cuda-11.7/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-11.7/lib64, or, add /usr/local/cuda-11.7/lib64 to /etc/ld.so.conf and run ldconfig as root

在路径中添加/usr/local/cuda-10.7/bin和/usr/local/cuda-10.7/lib64
在 vim ~/.bashrc末尾添加:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

 source ~/.bashrc
 nvcc -V

安装cudnn

https://developer.nvidia.com/rdp/cudnn-archive

方法一:
sudo dpkg -i cudnn-local-repo-ubuntu2204-8.9.7.29_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2004-8.9.7.29/cudnn-local-30472A84-keyring.gpg /usr/share/keyrings/
cd /var/cudnn-local-repo-ubuntu2204-8.9.7.29
sudo dpkg -i libcudnn8_8.9.7.29-1+cuda11.8_amd64.deb
sudo dpkg -i libcudnn8-dev_8.9.7.29-1+cuda11.8_amd64.deb
sudo dpkg -i libcudnn8-samples_8.9.7.29-1+cuda11.8_amd64.deb

 
cp -r /usr/src/cudnn_samples_v8/ $HOME
cd  $HOME/cudnn_samples_v8/mnistCUDNN
make clean && make
./mnistCUDNN
 
方法二(建议使用):
$ tar -xvf cudnn-linux-$arch-8.x.x.x_cudaX.Y-archive.tar.xz
$ sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
$ sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

安装nccl

NCCL下载地址:NVIDIA Collective Communications Library (NCCL) | NVIDIA Developer

下载地址:
https://developer.nvidia.com/nccl/nccl-legacy-downloads

  sudo dpkg -i  nccl-local-repo-ubuntu2204-2.14.3-cuda11.7_1.0-1_amd64.deb
  sudo cp /var/nccl-local-repo-ubuntu2204-2.14.3-cuda11.7/nccl-local-F0C3C384-keyring.gpg     /usr/share/keyrings/
  sudo apt install libnccl2 libnccl-dev
  sudo apt update

官方教程地址:https://docs.nvidia.com/deeplearning/nccl/install-guide/#down
3.1. Ubuntu
Installing NCCL on Ubuntu requires you to first add a repository to the APT system containing the NCCL packages, then installing the NCCL packages through APT. There are two repositories available; a local repository and a network repository. Choosing the latter is recommended to easily retrieve upgrades when newer versions are posted.
In the following commands, please replace with your CPU architecture: x86_64, ppc64le, or sbsa, and replace with the Ubuntu version, for example ubuntu1604, ubuntu1804, or ubuntu2004.
Install the repository.
For a local NCCL repository:
sudo dpkg -i nccl-repo-.deb
Note:
The local repository installation will prompt you to install the local key it embeds and with which packages are signed. Make sure to follow the instructions to install the local key, or the install phase will fail later.

For the network repository:
wget https://developer.download.nvidia.com/compute/cuda/repos///cuda-keyring_1.0-1_all.deb
sudo dpkg -i cuda-keyring_1.0-1_all.deb
Update the APT database:
sudo apt update
Install the libnccl2 package with APT. Additionally, if you need to compile applications with NCCL, you can install the libnccl-dev package as well:
Note: If you are using the network repository, the following command will upgrade CUDA to the latest version.
sudo apt install libnccl2 libnccl-dev
If you prefer to keep an older version of CUDA, specify a specific version, for example:
sudo apt install libnccl2=2.4.8-1+cuda10.0 libnccl-dev=2.4.8-1+cuda10.0
Refer to the download page for exact package versions.




## 安装miniconda

chop@zhangjiapeng:~$ wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py38_23.11.0-1-Linux-x86_64.sh
–2024-04-19 16:41:15-- https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py38_23.11.0-1-Linux-x86_64.sh
Resolving mirrors.tuna.tsinghua.edu.cn (mirrors.tuna.tsinghua.edu.cn)… 101.6.15.130, 2402:f000:1:400::2
Connecting to mirrors.tuna.tsinghua.edu.cn (mirrors.tuna.tsinghua.edu.cn)|101.6.15.130|:443… connected.
HTTP request sent, awaiting response… 200 OK
Length: 131882602 (126M) [application/octet-stream]
Saving to: ‘Miniconda3-py38_23.11.0-1-Linux-x86_64.sh’

Miniconda3-py38_23.11.0-1-Linux-x86_64. 100%[=============================================================================>] 125.77M 378KB/s in 5m 28s

2024-04-19 16:46:43 (393 KB/s) - ‘Miniconda3-py38_23.11.0-1-Linux-x86_64.sh’ saved [131882602/131882602]

chop@zhangjiapeng:~$ bash Miniconda3-py38_23.11.0-1-Linux-x86_64.sh

Welcome to Miniconda3 py38_23.11.0-1

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue

====================================== End User License Agreement - Miniconda

Copyright 2015-2023, Anaconda, Inc.

All rights reserved under the 3-clause BSD License:

This End User License Agreement (the “Agreement”) is a legal agreement between you and Anaconda, Inc. (“Anaconda”) and governs your use of Miniconda.

Subject to the terms of this Agreement, Anaconda hereby grants you a non-exclusive, non-transferable license to:

  • Install and use the Miniconda,
  • Modify and create derivative works of sample source code delivered in Miniconda subject to the Terms of Service for the Repository (as defined hereinafter
    ) available at https://www.anaconda.com/terms-of-service, and
  • Redistribute code files in source (if provided to you by Anaconda as source) and binary forms, with or without modification subject to the requirements se
    t forth below.

Anaconda may, at its option, make available patches, workarounds or other updates to Miniconda. Unless the updates are provided with their separate governing
terms, they are deemed part of Miniconda licensed to you as provided in this Agreement. This Agreement does not entitle you to any support for Miniconda.

Anaconda reserves all rights not expressly granted to you in this Agreement.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
    other materials provided with the distribution.
  • Neither the name of Anaconda nor the names of its contributors may be used to endorse or promote products derived from this software without specific prio
    r written permission.

You acknowledge that, as between you and Anaconda, Anaconda owns all right, title, and interest, including all intellectual property rights, in and to Minicon
da and, with respect to third-party products distributed with or through Miniconda, the applicable third-party licensors own all right, title and interest, in
cluding all intellectual property rights, in and to such products. If you send or transmit any communications or materials to Anaconda suggesting or recommend
ing changes to the software or documentation, including without limitation, new features or functionality relating thereto, or any comments, questions, sugges
tions or the like (“Feedback”), Anaconda is free to use such Feedback. You hereby assign to Anaconda all right, title, and interest in, and Anaconda is free t
o use, without any attribution or compensation to any party, any ideas, know-how, concepts, techniques or other intellectual property rights contained in the
Feedback, for any purpose whatsoever, although Anaconda is not required to use any Feedback.

DISCLAIMER

THIS SOFTWARE IS PROVIDED BY ANACONDA AND ITS CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIE
S OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANACONDA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY W
AY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TO THE MAXIMUM EXTENT PERMITTED BY LAW, ANACONDA AND ITS AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, OR ANY
LOST PROFITS, LOSS OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN CONNECTION WITH THIS AGREEME
NT OR THE USE OR PERFORMANCE OF MINICONDA, WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEG
LIGENCE), PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF LIABILITY. IN NO EVENT WILL THE TOTAL CUMULATIVE LIABILITY OF ANACONDA AND ITS AFFILIATE
S UNDER OR ARISING OUT OF THIS AGREEMENT EXCEED 10.00 U.S. DOLLARS.

Miscellaneous

If you want to terminate this Agreement, you may do so by discontinuing use of Miniconda. Anaconda may, at any time, terminate this Agreement and the license
granted hereunder if you fail to comply with any term of this Agreement. Upon any termination of this Agreement, you agree to promptly discontinue use of the
Miniconda and destroy all copies in your possession or control. Upon any termination of this Agreement all provisions survive except for the licenses granted
to you.

This Agreement is governed by and construed in accordance with the internal laws of the State of Texas without giving effect to any choice or conflict of law
provision or rule that would require or permit the application of the laws of any jurisdiction other than those of the State of Texas. Any legal suit, action,
or proceeding arising out of or related to this Agreement or the licenses granted hereunder by you must be instituted exclusively in the federal courts of th
e United States or the courts of the State of Texas in each case located in Travis County, Texas, and you irrevocably submit to the jurisdiction of such court
s in any such suit, action, or proceeding.

Notice of Third Party Software Licenses

Miniconda provides access to a repository (the “Repository”) which contains software packages or tools licensed on an open source basis from third parties and
binary packages of these third party tools. These third party software packages or tools are provided on an “as is” basis and are subject to their respective
license agreements as well as this Agreement and the Terms of Service for the Repository located at https://www.anaconda.com/terms-of-service; provided, howe
ver, no restriction contained in the Terms of Service shall be construed so as to limit Your ability to download the packages contained in Miniconda provided
you comply with the license for each such package. These licenses may be accessed from within the Miniconda software[1] or https://www.anaconda.com/legal. Inf
ormation regarding which license is applicable is available from within many of the third party software packages and tools and at https://repo.anaconda.com/p
kgs/main/ and https://repo.anaconda.com/pkgs/r/. Anaconda reserves the right, in its sole discretion, to change which third party tools are included in the Re
pository accessible through Miniconda.

Intel Math Kernel Library

Miniconda provides access to re-distributable, run-time, shared-library files from the Intel Math Kernel Library (“MKL binaries”).

Copyright 2018 Intel Corporation. License available at https://software.intel.com/en-us/license/intel-simplified-software-license (the “MKL License”).

You may use and redistribute the MKL binaries, without modification, provided the following conditions are met:

  • Redistributions must reproduce the above copyright notice and the following terms of use in the MKL binaries and in the documentation and/or other materia
    ls provided with the distribution.
  • Neither the name of Intel nor the names of its suppliers may be used to endorse or promote products derived from the MKL binaries without specific prior w
    ritten permission.
  • No reverse engineering, decompilation, or disassembly of the MKL binaries is permitted.

You are specifically authorized to use and redistribute the MKL binaries with your installation of Miniconda subject to the terms set forth in the MKL License
. You are also authorized to redistribute the MKL binaries with Miniconda or in the Anaconda package that contains the MKL binaries. If needed, instructions f
or removing the MKL binaries after installation of Miniconda are available at https://docs.anaconda.com.

cuDNN Software

Miniconda also provides access to cuDNN software binaries (“cuDNN binaries”) from NVIDIA Corporation. You are specifically authorized to use the cuDNN binarie
s with your installation of Miniconda subject to your compliance with the license agreement located at https://docs.nvidia.com/deeplearning/sdk/cudnn-sla/inde
x.html. You are also authorized to redistribute the cuDNN binaries with an Miniconda package that contains the cuDNN binaries. You can add or remove the cuDNN
binaries utilizing the install and uninstall features in Miniconda.

cuDNN binaries contain source code provided by NVIDIA Corporation.

Arm Performance Libraries

Arm Performance Libraries (Free Version): Anaconda provides access to software and related documentation from the Arm Performance Libraries (“Arm PL”) provide
d by Arm Limited. By installing or otherwise accessing the Arm PL, you acknowledge and agree that use and distribution of the Arm PL is subject to your compli
ance with the Arm PL end user license agreement located at: https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-performance-libraries/eu
la.

Export; Cryptography Notice

You must comply with all domestic and international export laws and regulations that apply to the software, which include restrictions on destinations, end us
ers, and end use. Miniconda includes cryptographic software. The country in which you currently reside may have restrictions on the import, possession, use, a
nd/or re-export to another country, of encryption software. BEFORE using any encryption software, please check your country’s laws, regulations and policies c
oncerning the import, possession, or use, and re-export of encryption software, to see if this is permitted. See the Wassenaar Arrangement http://www.wassenaa
r.org/ for more information.

Anaconda has self-classified this software as Export Commodity Control Number (ECCN) EAR99, which includes mass market information security software using or
performing cryptographic functions with asymmetric algorithms. No license is required for export of this software to non-embargoed countries.

The Intel Math Kernel Library contained in Miniconda is classified by Intel as ECCN 5D992.c with no license required for export to non-embargoed countries.

The following packages listed on https://www.anaconda.com/cryptography are included in the Repository accessible through Miniconda that relate to cryptography
.

Last updated March 21, 2022

Do you accept the license terms? [yes|no]

yes

Miniconda3 will now be installed into this location:
/home/chop/miniconda3

  • Press ENTER to confirm the location
  • Press CTRL-C to abort the installation
  • Or specify a different location below

[/home/chop/miniconda3] >>>
PREFIX=/home/chop/miniconda3
Unpacking payload …

Installing base environment…

Downloading and Extracting Packages:

Downloading and Extracting Packages:

Preparing transaction: done
Executing transaction: done
installation finished.
Do you wish to update your shell profile to automatically initialize conda?
This will activate conda on startup and change the command prompt when activated.
If you’d prefer that conda’s base environment not be activated on startup,
run the following command when conda is activated:

conda config --set auto_activate_base false

You can undo this by running conda init --reverse $SHELL? [yes|no]
[no] >>> yes
no change /home/chop/miniconda3/condabin/conda
no change /home/chop/miniconda3/bin/conda
no change /home/chop/miniconda3/bin/conda-env
no change /home/chop/miniconda3/bin/activate
no change /home/chop/miniconda3/bin/deactivate
no change /home/chop/miniconda3/etc/profile.d/conda.sh
no change /home/chop/miniconda3/etc/fish/conf.d/conda.fish
no change /home/chop/miniconda3/shell/condabin/Conda.psm1
no change /home/chop/miniconda3/shell/condabin/conda-hook.ps1
no change /home/chop/miniconda3/lib/python3.8/site-packages/xontrib/conda.xsh
no change /home/chop/miniconda3/etc/profile.d/conda.csh
modified /home/chop/.bashrc

> For changes to take effect, close and re-open your current shell. <

Thank you for installing Miniconda3!文章来源地址https://www.toymoban.com/news/detail-861258.html




  /home/chop/miniconda3/shell/condabin/Conda.psm1
no change     /home/chop/miniconda3/shell/condabin/conda-hook.ps1
no change     /home/chop/miniconda3/lib/python3.8/site-packages/xontrib/conda.xsh
no change     /home/chop/miniconda3/etc/profile.d/conda.csh
modified      /home/chop/.bashrc

==> For changes to take effect, close and re-open your current shell. <==

Thank you for installing Miniconda3!

到了这里,关于基础环境:wsl2安装Ubuntu22.04 + miniconda的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Win10+WSL2+Ubuntu22.04 +图形化桌面配置

    如何在 Windows 10 上安装 WSL 2 - 知乎 用IDM能加速下载,去官网下载22.04的appxbundle,后缀改为zip,这个包含各种操作系统的Ubuntu22.04的appx。我们选择x64解压就行了,后缀改为zip,然后参考下面的文章安装到D盘。 ubuntu 22.04国内镜像阿里云/163源/清华大学/中科大  WSL2配置xrdp一键启

    2024年02月20日
    浏览(57)
  • 【Docker Desktop】Windows11家庭版安装docker desktop和WSl2(Ubuntu22.04)并完成迁移,配置国内镜像

    目录 一、准备工作 ① 安装Hyper-V ②开启电脑的虚拟化技术,如何确定是否开启了虚拟化技术 ③ 启动Windows功能 二、安装WSl 三、移动Ubuntu 22.04.2 LTS 四、迁移 WSL2 安装位置 五、安装Docker Desktop 六、配置Docker Desktop  七、测试 因为win11家庭版本身是不支持hyper-V的,需要手动安装

    2024年01月20日
    浏览(68)
  • 【2023最新版】Win11: WSL(Ubuntu22.04)使用docker远程容器教程(Windows的Docker Desktop下载安装、迁移到非系统盘、配置国内镜像源、设置 WSL2)

    目录 一、准备工作 1. 安装WSL(适用于 Linux 的 Windows 子系统) 2. docker简介——来源chatGPT 二、Windows安装 Docker Desktop 1. 官网链接 2. 安装过程 3. 迁移到非系统盘 4. 配置国内镜像源 国内镜像 方法1——通过Docker-Desktop配置 方法2——找打daemon.json文件进行配置 三、在适用于 Wind

    2024年02月12日
    浏览(84)
  • 全网最详细搭建Win10+WSL2+Ubuntu-22.04LTS+CUDA+Xfce4+noVNC个人工作站

    本文主要解决的问题点: win10下使用Ubuntu系统 解决WSL默认不支持systemD的BUG 物理机显卡可在Ubuntu系统直通使用 Ubuntu系统界面图形可视化 图形界面汉化 Ubuntu系统下使用拼音输入法 不需要物理机安装任何软件即可通过web直接访问Ubuntu 配置Firefox和Pycharm 解决WSL下的noVNC剪贴板不能

    2024年02月07日
    浏览(46)
  • Linux基础篇 Ubuntu 22.04的环境安装-02

    目录 一、资料的获取 二、安装虚拟机 三、安装Ubuntu过程 四、注意事项 1.通过官方网站下载 Ubuntu系统下载 | Ubuntu https://cn.ubuntu.com/download 2.下载桌面板即可 3.选择下载的版本   1.创建新的虚拟机 2.选择自定义安装  3.硬件兼容性选项默认即可   4. 选择稍后安装操作系统  5.选

    2024年02月08日
    浏览(45)
  • WSL安装与使用(Ubuntu22.04)

    本文主要记录Windows WSL的安装和使用过程,内容包括WSL安装过程、WSL安装Ubuntu、Ubuntu更换镜像源,Ubuntu安装Dcoker并配置等步骤。 Windows Subsystem for Linux(简称WSL)是一个在Windows 1011上能够运行原生Linux二进制可执行文件(ELF格式)的兼容层。它是由微软与Canonical公司合作开发,

    2024年02月08日
    浏览(48)
  • 【WSL】Ubuntu 22.04 安装配置docker

    WSL就是个坑! WSL就是个坑! WSL就是个坑! 我第一次安装使用 Ubuntu 还是第一台笔记本,装了双系统,版本是18.04 LTS,但是我那个时候只有机械硬盘,因此 Ubuntu 桌面十分的卡。 兜兜转转,大三的时候发现微软的 WSL2 很好用,想装一个学习 Linux,当然选择了那个时候最新的

    2024年02月08日
    浏览(51)
  • 7、云服务器、WSL2(Widnows)Ubuntu22.04、安装图形界面/桌面xfce4、vnc连接、设置中文桌面、配置中文输入法、安装浏览器和文本编辑器、终端、解决客户端和服务器桌面复制黏贴问题

    0.1、备注 以下方式适用于云服务器和WSL2(适用于Linux的windows子系统)Ubuntu22.02 0.2、说明 在 Ubuntu 服务器上安装图形界面可以让你通过图形化的方式管理和操作系统。 Ubuntu 提供了多种图形界面选择,以下是一些常见的图形界面: GNOME:GNOME 是 Ubuntu 默认的图形界面环境,它提

    2024年02月20日
    浏览(73)
  • Windows WSL子系统Ubuntu22.04安装Nvidia显卡驱动

    最近在研究AI,如果在Linux系统中部署的话需要重装系统,有些麻烦,又不想折腾。所以闲置很久没研究的WSL又拿起来研究了,当然部署ai还需要显卡驱动的支持,就必须先安装显卡驱动。 还没有安装过WSL的童鞋可以看我之前发布的这篇文章 windows11 安装 Linux子系统 WSL及ubunt

    2024年02月09日
    浏览(63)
  • xshell连接Windows中通过wsl安装的linux子系统-Ubuntu 22.04

    Windows11下清理Docker Desktop与wsl的C盘空间占用(2023-10-12 20:50:41) 1.1、 启动或关闭Windows功能-适用于Linux的Windows子系统 1.2 WSL 官方文档 使用 WSL 在 Windows 上安装 Linux 补充:例外情况(使用 WSL 1 而不是 WSL 2) 1.3、在Microsoft store中搜索Ubuntu安装 在Microsoft store中搜索Ubuntu,找到带LTS结

    2024年02月15日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包