python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2

这篇具有很好参考价值的文章主要介绍了python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  • 2024年4月27日14:32:30----0.9.2

参照模型

以pytorch官网的tutorial为观察对象,链接是https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

模型代码如下

import torch.nn as nn
import torch.nn.functional as F

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size, hidden_size)
        self.h2h = nn.Linear(hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        hidden = F.tanh(self.i2h(input) + self.h2h(hidden))
        output = self.h2o(hidden)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)

安装Netron

pip install netron即可

其他安装方式参考链接
https://blog.csdn.net/m0_49963403/article/details/136242313

写netron代码

随便找一个地方打个点,如sample方法中

import netron
max_length = 20

# Sample from a category and starting letter
def sample(category, start_letter='A'):
    with torch.no_grad():  # no need to track history in sampling
        category_tensor = categoryTensor(category)
        input = inputTensor(start_letter)
        hidden = rnn.initHidden()

        output_name = start_letter

        for i in range(max_length):
#             print("category_tensor",category_tensor.size())
#             print("input[0]",input[0].size())
#             print("hidden",hidden.size())
            
            output, hidden = rnn(category_tensor, input[0], hidden)
            torch.onnx.export(rnn,(category_tensor, input[0], hidden) , f='AlexNet1.onnx')   #导出 .onnx 文件
            netron.start('AlexNet1.onnx') #展示结构图
        
            break
#             print("output",output.size())
#             print("hidden",hidden.size())
#             print("====================")
        
            topv, topi = output.topk(1)
            topi = topi[0][0]
            if topi == n_letters - 1:
                break
            else:
                letter = all_letters[topi]
                output_name += letter
            input = inputTensor(letter)

        return output_name

# Get multiple samples from one category and multiple starting letters
def samples(category, start_letters='ABC'):
    for start_letter in start_letters:
        print(sample(category, start_letter))
        break

samples('Russian', 'RUS')

运行查看结果

结果是在浏览器中,运行成功后会显示:
Serving ‘AlexNet.onnx’ at http://localhost:8080

打开这个网页就可以看见模型结构,如下图

python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2,python,pytorch,python,pytorch,开发语言

需要关注的地方

  1. 关于参数
    如果模型是一个参数的情况下,如下使用就可以了
import torch
from torchvision.models import AlexNet
import netron
model = AlexNet()
input = torch.ones((1,3,224,224))
torch.onnx.export(model, input, f='AlexNet.onnx')
netron.start('AlexNet.onnx')

如果模型有多个参数的情况下,则需要如下用括号括起来,如本文中的例子文章来源地址https://www.toymoban.com/news/detail-861557.html

torch.onnx.export(rnn,(category_tensor, input[0], hidden) , f='AlexNet1.onnx')   #导出 .onnx 文件
netron.start('AlexNet1.onnx') #展示结构图
  1. 如果运行过程中发现报错找不到模型
    有可能是你手动删除了生成的模型,最好的方法是重新生成这个模型,再运行

到了这里,关于python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 如何查看自己使用的Python、CUDA、Pytorch、TensorFlow的版本(Windows)

    1、查看python版本 1)键盘 windows+R键,弹出如下:2、  2)点击确定,弹出如下:  3)输入python,便可输出python版本 2、查看cuda版本 1)打开pycharm编辑器 2)输入: 3)运行后输出:   3、查看pytorch版本 1)打开pycharm编辑器 2)输入: 3)运行后输出:     4、查看tensorflow版本

    2024年02月08日
    浏览(52)
  • Python小知识 - 【Python】如何使用Pytorch构建机器学习模型

    【Python】如何使用Pytorch构建机器学习模型 机器学习是人工智能的一个分支,它的任务是在已有的数据集上学习,最终得到一个能够解决新问题的模型。Pytorch是一个开源的机器学习框架,它可以让我们用更少的代码构建模型,并且可以让模型训练的过程更加简单。 首先,我们

    2024年02月09日
    浏览(36)
  • Pytorch模型如何查看每层输入维度输出维度

    在 PyTorch 中,可以使用 torchsummary 库来实现对 PyTorch 模型的结构及参数统计的输出,其可以方便我们查看每层输入、输出的维度以及参数数量等信息。 安装 torchsummary 库: 使用方法如下: 其中, model 是需要查看的模型, (3, 32, 32) 表示模型的输入维度,即 C = 3,H = 32,W = 32。

    2024年02月16日
    浏览(40)
  • 【netron】模型可视化工具netron

    在实际的项目中,经常会遇到各种网络模型,需要我们快速去了解网络结构。如果单纯的去看模型文件,脑海中很难直观的浮现网络的架构。这时,就可以使用netron可视化工具,可以清晰的看到每一层的输入输出,网络总体的架构,简单好用。 这里介绍两种使用方式: 1、使

    2024年02月05日
    浏览(32)
  • 使用Python和PyTorch库构建一个简单的文本分类大模型:

            在当今的大数据时代,文本分类任务在许多领域都有着广泛的应用,如情感分析、垃圾邮件过滤、主题分类等。为了有效地处理这些任务,我们通常需要构建一个强大的文本分类模型。在本篇博客中,我们将使用Python和PyTorch库来构建一个简单的文本分类大模型,

    2024年01月25日
    浏览(46)
  • YOLOv8的目标对象的分类,分割,跟踪和姿态估计的多任务检测实践(Netron模型可视化)

    YOLOv8是目前最新版本,在以前YOLO版本基础上建立并加入了一些新的功能,以进一步提高性能和灵活性,是目前最先进的模型。YOLOv8旨在快速,准确,易于使用,使其成为广泛的 目标检测和跟踪,实例分割,图像分类和姿态估计任务 的绝佳选择。 YOLOv8的安装条件 Python=3.8 Py

    2024年02月11日
    浏览(40)
  • Python与深度学习:Keras、PyTorch和Caffe的使用和模型设计

      深度学习已经成为当今计算机科学领域的热门技术,而Python则是深度学习领域最受欢迎的编程语言之一。在Python中,有多个深度学习框架可供选择,其中最受欢迎的包括Keras、PyTorch和Caffe。本文将介绍这三个框架的使用和模型设计,帮助读者了解它们的优势、特点和适用场

    2024年02月09日
    浏览(39)
  • 一文带你搞懂PyTorch中所有模型查看的函数model.modules()系列

    model一般继承nn.Model 他的实例一般具有几个有序 字典 , _modules,_parameters,_buffers,表示当前model的子模块,自己注册的parameters和buffers 注意,_modules字典keys对应子模块名字,value对应子模块的实例,所以可以迭代的调用子模块的子模块,比如下面两个函数 因为是字典,所以可

    2024年02月06日
    浏览(47)
  • Python使用pytorch深度学习框架构造Transformer神经网络模型预测红酒分类例子

    经典的红酒分类数据集是指UCI机器学习库中的Wine数据集。该数据集包含178个样本,每个样本有13个特征,可以用于分类任务。 具体每个字段的含义如下: alcohol:酒精含量百分比 malic_acid:苹果酸含量(克/升) ash:灰分含量(克/升) alcalinity_of_ash:灰分碱度(以mEq/L为单位)

    2024年02月02日
    浏览(45)
  • 如何正确查看pytorch运行时真正调用的cuda版本

    一般情况我们会安装使用多个cuda版本。而且pytorch在安装时也会自动安装一个对应的版本。 正确查看方式:  想要查看 Pytorch 实际使用的运行时的 cuda 目录,可以直接输出之前介绍的 cpp_extension.py 中的 CUDA_HOME 变量。 上面输出的 /usr/local/cuda 即为软链接的cuda版本。  不正确查

    2024年02月11日
    浏览(112)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包