Spark和Hadoop的安装

这篇具有很好参考价值的文章主要介绍了Spark和Hadoop的安装。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

实验内容和要求

1.安装Hadoop和Spark

       进入Linux系统,完成Hadoop伪分布式模式的安装。完成Hadoop的安装以后,再安装Spark(Local模式)。

2.HDFS常用操作

        使用hadoop用户名登录进入Linux系统,启动Hadoop,参照相关Hadoop书籍或网络资料,或者也可以参考本教程官网的“实验指南”栏目的“HDFS操作常用Shell命令”,使用Hadoop提供的Shell命令完成如下操作:

        (1)启动Hadoop,在HDFS中创建用户目录“/user/hadoop”;

        (2)在Linux系统的本地文件系统的“/home/hadoop”目录下新建一个文本文件test.txt,并在该文件中随便输入一些内容,然后上传到HDFS的“/user/hadoop”目录下;

        (3)把HDFS中“/user/hadoop”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/home/hadoop/下载”目录下;

        (4)将HDFS中“/user/hadoop”目录下的test.txt文件的内容输出到终端中进行显示;

        (5)在HDFS中的“/user/hadoop”目录下,创建子目录input,把HDFS中“/user/hadoop”目录下的test.txt文件,复制到“/user/hadoop/input”目录下;

        (6)删除HDFS中“/user/hadoop”目录下的test.txt文件,删除HDFS中“/user/hadoop”目录下的input子目录及其子目录下的所有内容。

3.  Spark读取文件系统的数据

        (1)在spark-shell中读取Linux系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数;

        (2)在spark-shell中读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;

        (3)编写独立应用程序,读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;通过sbt工具将整个应用程序编译打包成 JAR包,并将生成的JAR包通过 spark-submit 提交到 Spark 中运行命令。

实验环境

VMware 16.1.2 build-17966106

ubuntu-22.04.4-desktop-amd64.iso

Java 11

scala-2.13.13.tgz

hadoop-3.3.6.tar.gz

spark-3.5.1-bin-hadoop3-scala2.13.tgz

sbt-1.9.9.tgz

安装JDK

安装Java

sudo apt update
sudo apt upgrade
sudo apt-get install openjdk-11-jre openjdk-11-jdk

 配置环境变量

vim ~/.bashrc

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64

让路径生效

source ~/.bashrc

 验证是否成功

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

安装Scala

下载解压

Scala 2.13.13 | The Scala Programming Languagehttps://www.scala-lang.org/download/2.13.13.html确保文件的路径是~/下载/scala-2.13.13.tgz

将文件解压到/usr/local下并且更名为scala

sudo tar -zxf ~/下载/scala-2.13.13.tgz -C /usr/local   
cd /usr/local/
sudo mv ./scala-2.13.13 ./scala 

配置

让普通用户拥有对scala目录的权限

sudo chown -R hadoop ./scala 

配置环境变量 

vim ~/.bashrc

export PATH=$PATH:/usr/local/scala/bin

source ~/.bashrc

验证是否成功 

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

安装ssh 

安装

sudo apt install openssh-server

登录

ssh localhost

切换到root用户

su –

修改sshd_config

vim /etc/ssh/sshd_config

添加 PasswordAuthentication yes

配置免密登录

exit                           
cd ~/.ssh/ 
cat ./id_rsa.pub >> ./authorized_keys  
ssh-keygen -t rsa             

一直回车即可

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

安装hadoop

https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.3.6/hadoop-3.3.6.tar.gzhttps://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.3.6/hadoop-3.3.6.tar.gz

下载解压

sudo tar -zxf ~/下载/hadoop-3.3.6.tar.gz -C /usr/local   
cd /usr/local/
sudo mv ./hadoop-3.3.6/ ./hadoop           

配置

sudo chown -R hadoop ./hadoop       # 修改文件权限

添加hadoop环境变量

vim ~/.bashrc

export HADOOP_HOME=/usr/local/hadoop

export PATH=$PATH:$HADOOP_HOME/bin

export PATH=$PATH:$HADOOP_HOME/sbin

修改hadoop-env.sh与yarn-env.sh文件

cd  /usr/local/hadoop/etc/hadoop
vim hadoop-env.sh
vim yarn-env.sh

在最后添加

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64

修改core-site.xml 和 hdfs-site.xml

cd /usr/local/hadoop/etc/hadoop/
vim  core-site.xml

 将<configuration>内容修改如下:

<configuration>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>file:/usr/local/hadoop/tmp</value>
        <description>Abase for other temporary directories.</description>
    </property>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9000</value>
    </property>
    <property>
        <name>hadoop.http.staticuser.user</name> #解决web端无法删除上传文件
        <value>hadoop</value>
    </property>
</configuration>
vim hdfs-site.xml

  将<configuration>内容修改如下:

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/usr/local/hadoop/tmp/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/usr/local/hadoop/tmp/dfs/data</value>
    </property>
</configuration>

格式化NameNode (仅需要执行一次即可,之后不需要执行)

cd /usr/local/hadoop
./bin/hdfs namenode -format

开启 NameNode 和 DataNode 守护进程

cd /usr/local/hadoop
./sbin/start-dfs.sh

配置YARN

修改 mapred-site.xml文件

cd /usr/local/hadoop/etc/hadoop
vim mapred-site.xml

  将<configuration>内容修改如下: 

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

修改vim yarn-site.xml文件

vim vim yarn-site.xml

  将<configuration>内容修改如下: 

<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>localhost</value>
    </property>
</configuration>

修改start-yarn.sh和stop-yarn.sh

cd ./sbin
vim start-yarn.sh
vim stop-yarn.sh

在文件中加入以下三行:

YARN_RESOURCEMANAGER_USER=root

HADOOP_SECURE_DN_USER=yarn

YARN_NODEMANAGER_USER=root

启动YARN

cd /usr/local/hadoop
./sbin/start-yarn.sh

开启历史服务器

cd /usr/local/hadoop
./bin/mapred --daemon start historyserver

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

localhosthttp://localhost:9870/

安装Spark

下载 |Apache Sparkhttps://spark.apache.org/downloads.htmlSpark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

sudo tar -zxf ./spark-3.5.1-bin-hadoop3-scala2.13.tgz -C /usr/local
cd /usr/local
sudo mv spark-3.5.1-bin-hadoop3-scala2.13/ spark

配置

sudo chown -R hadoop:hadoop spark   # 此处的 hadoop 为你的用户名

修改spark-env.sh

cd /usr/local/spark
cp ./conf/spark-env.sh.template ./conf/spark-env.sh
vim ./conf/spark-env.sh

 在第一行下面添加以下配置信息

export SPARK_MASTER_PORT=7077
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export SPARK_MASTER_IP=localhost
export SPARK_LOCAL_IP=localhost

启动spark

cd /usr/local/spark
./sbin/start-all.sh

测试spark

cd /usr/local/spark
bin/run-example SparkPi 2>&1 |grep "Pi is"

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

启动shell

cd /usr/local/spark
bin/spark-shell

安装sbt

下载解压

下载 |SBT公司 (scala-sbt.org)https://www.scala-sbt.org/download/

sudo tar -zxvf ./sbt-1.9.9.tgz -C /usr/local
cd /usr/local/sbt

 下面慢可以用这个

echo "deb https://repo.scala-sbt.org/scalasbt/debian all main" | sudo tee /etc/apt/sources.list.d/sbt.list
echo "deb https://repo.scala-sbt.org/scalasbt/debian /" | sudo tee /etc/apt/sources.list.d/sbt_old.list
curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0x2EE0EA64E40A89B84B2DF73499E82A75642AC823" | sudo apt-key add
sudo apt-get update
sudo apt-get install sbt

配置

sudo chown -R hadoop /usr/local/sbt
cd /usr/local/sbt
cp ./bin/sbt-launch.jar ./
vim /usr/local/sbt/sbt

 内容如下:

#!/bin/bash
SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M"
java $SBT_OPTS -jar `dirname $0`/sbt-launch.jar "$@"
chmod u+x /usr/local/sbt/sbt

启动sbt

cd /usr/local/sbt
./sbt sbtVersion

新建项目

sudo mkdir -p /example/sparkapp/src/main/scala
cd /example/sparkapp/src/main/scala
sudo touch SimpleApp.scala
sudo vim SimpleApp.scala 

 内容如下:

/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
 
object SimpleApp {
def main(args: Array[String]) {
            val logFile = "file:///usr/local/spark/README.md" // Should be some file on your system
            val conf = new SparkConf().setAppName("Simple Application")
            val sc = new SparkContext(conf)
            val logData = sc.textFile(logFile, 2).cache()
            val numAs = logData.filter(line => line.contains("a")).count()
            val numBs = logData.filter(line => line.contains("b")).count()
            println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
    }
}

创建.sbt文件

cd /example/sparkapp
sudo touch build.sbt
sudo vim build.sbt
name := "Simple Project"
version := "1.0"
scalaVersion := "2.13.13"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.5.1"

打包

/usr/local/sbt/sbt package

 如果出现无法创建文件的错误,需要在前面加一个sudo.或者整个在root用户下面安装配置。

[error] [launcher] error during sbt launcher: java.io.IOException: Could not create directory /sparkapp/target/global-logging: java.nio.file.AccessDeniedException: /sparkapp/target

执行

cd /example/sparkapp
spark-submit --class "SimpleApp" ./target/scala-2.13/simple-project_2.13-1.0.jar 2>&1 | grep "Lines"

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

安装Maven

安装

apt install maven

新建测试项目

midir -p /example/sparkapp2/src/main/scala
cd /example/sparkapp2/src/main/scala
sudo touch SimpleApp.scala
sudo vim SimpleApp.scala
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
 
object SimpleApp {
def main(args: Array[String]) {
    val logFile = "file:///usr/local/spark/README.md" // Should be some file on your system
            val conf = new SparkConf().setAppName("Simple Application")
            val sc = new SparkContext(conf)
            val logData = sc.textFile(logFile, 2).cache()
            val numAs = logData.filter(line => line.contains("a")).count()
            val numBs = logData.filter(line => line.contains("b")).count()
            println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
    }
}

创建pom.xml文件

cd /example/sparkapp2
sudo touch pom.xml
sudo vim pom.xml
<project>
    <groupId>shuda.hunnu</groupId>
    <artifactId>simple-project</artifactId>
    <modelVersion>4.0.0</modelVersion>
    <name>Simple Project</name>
    <packaging>jar</packaging>
    <version>1.0</version>
    <repositories>
        <repository>
            <id>jboss</id>
            <name>JBoss Repository</name>
            <url>http://repository.jboss.com/maven2/</url>
        </repository>
    </repositories>
    <dependencies>
        <dependency> <!-- Spark dependency -->
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.13</artifactId>
            <version>3.5.1</version>
        </dependency>
    </dependencies>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <scalaVersion>2.13.13</scalaVersion>
          <args>
            <arg>-target:jvm-11</arg>
          </args>
        </configuration>
      </plugin>
    </plugins>
  </build>
</project>

修改setting.xml文件

sudo vim /usr/share/maven/conf/settings.xml
sudo vim /etc/maven/settings.xml

需要把文件中原本mirror标题的地方给取消注释,然后添加如下内容: 

<mirror>  
      <id>alimaven</id>   
      <name>aliyun maven</name>     
      <url>
      http://maven.aliyun.com/nexus/content/groups/public/</url>  
      <mirrorOf>central</mirrorOf>  
</mirror>

 如果标签缺失就会出现如下报错(双标签变成单标签)

[ERROR] Error executing Maven.
[ERROR] 1 problem was encountered while building the effective settings
[FATAL] Non-parseable settings /usr/share/maven/conf/settings.xml: end tag name </settings> must match start tag name <mirrors> from line 146 (position: TEXT seen ...</activeProfiles>\n  -->\n</settings>... @261:12)  @ /usr/share/maven/conf/settings.xml, line 261, column 12

打包执行

.jar文件的路径可能会发生改变。

sudo /usr/share/maven/bin/mvn package
spark-submit --class "SimpleApp" ./target/simple-project-1.0.jar 2>&1 | grep "Lines"

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

启动Hadoop,在HDFS中创建用户目录“/user/hadoop”

cd /usr/local/hadoop
./sbin/start-dfs.sh                #启动HDFS
./sbin/start-yarn.sh               #启动YARN
hadoop fs -mkdir -p /user/Hadoop   #创建用户目录/user/hadoop
hadoop fs -ls /user                #检查目录是否创建成功

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

在Linux系统的本地文件系统的“/home/hadoop”目录下新建一个文本文件test.txt,并在该文件中随便输入一些内容,然后上传到HDFS的“/user/hadoop”目录下

sudo vim test.txt
hadoop fs -put test.txt /user/hadoop

不能重复上传put: `/user/hadoop/test.txt': File exists

把HDFS中“/user/hadoop”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/home/hadoop/下载”目录下

sudo rm test.txt             #先将原始位置上面的test.txt删除
hadoop fs -get /user/hadoop/test.txt /home/hadoop/

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

将HDFS中“/user/hadoop”目录下的test.txt文件的内容输出到终端中进行显示

hadoop fs -cat /user/hadoop/test.txt

在HDFS中的“/user/hadoop”目录下,创建子目录input,把HDFS中“/user/hadoop”目录下的test.txt文件,复制到“/user/hadoop/input”目录下

hadoop fs -mkdir -p /user/hadoop/input

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

删除HDFS中“/user/hadoop”目录下的test.txt文件,删除HDFS中“/user/hadoop”目录下的input子目录及其子目录下的所有内容

hadoop fs -rm /user/hadoop/test.txt

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

hadoop fs -rm -r /user/hadoop/input  #用hdfs dfs 替代hadoop fs也行

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

这里删除目录是用-r,不能用-rf。-rm: Illegal option -rf

在spark-shell中读取Linux系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数

cd /usr/local/spark
./sbin/start-all.sh
bin/spark-shell #启动spark-shell

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

val fileData=sc.textFile("file:/home/hadoop/test.txt")
val count=fileData.count()

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

在spark-shell中读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数 

val fileData=sc.textFile("/user/hadoop/test.txt")
val count=fileData.count()

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

不写file,默认是hdfs

val fileData=sc.textFile("hdfs:/user/hadoop/test.txt")
val count=fileData.count()

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

编写独立应用程序,读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;通过sbt工具将整个应用程序编译打包成 JAR包,并将生成的JAR包通过 spark-submit 提交到 Spark 中运行命令

创建项目

sudo mkdir -p /example/sparkapp3/src/main/scala
cd /example/sparkapp3/src/main/scala
sudo touch SimpleApp.scala
sudo vim SimpleApp.scala 
/*HDFStest.scala */

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object SimpleApp {
  def main(args: Array[String]): Unit = {
    val logFile ="hdfs:/user/hadoop/test.txt"
    val conf = new SparkConf().setAppName("Simple Application")
    val sc = new SparkContext(conf)
    val logData = sc.textFile(logFile, 2)
    val num = logData.count()
    printf("The num of this file is %d\n", num)
  }
} 

创建.sbt文件 

cd /example/sparkapp3
sudo touch build.sbt
sudo vim build.sbt
name := "Simple Project"
version := "1.0"
scalaVersion := "2.13.13"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.5.1"

 打包执行

这个--class,应该是需要和类名保持一致的,为了方便,我把类名还是改成了SimpleApp.

/usr/local/sbt/sbt package
spark-submit --class " SimpleApp " ./target/scala-2.13/simple-project_2.13-1.0.jar  2>&1 | grep "num" 

 如果这个是直接抄网上的话,有的路径不对(这个路径最好与前面保持一致,网上的就是端口,两种方法的路径都不一样,简直是误人子弟),我也不知道他们是怎么运行出来的,就很无语,而且都是给图片。

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

Spark和Hadoop的安装,spark,hadoop,大数据,scala,sbt,maven

总结

在HDFS中使用命令和本地差不多,但是还是有点小区别,前面是用hadoop fs -,或者hdfs dfs -,然后命令的参数可能发生了变化,编写scala程序还是有点小问题,主要卡的最久的就是在网上看了一个觉得可以运行出来,结果一直显示路径错误了,结果仔细一看,放的位置都不一样,服了。

需要在.bashrc中粘贴这些语句。文章来源地址https://www.toymoban.com/news/detail-861689.html

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64
export PATH=$PATH:/usr/local/scala/bin
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin
export PATH=$PATH:$SPARK_HOME/sbin
export LD_LIBRARY_PATH=/usr/local/hadoop/lib/native
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"

到了这里,关于Spark和Hadoop的安装的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 伪分布式hadoop+spark+scala 超详细搭建

    目录 安装伪分布式hadoop 安装 JAVA 环境 实现免密登陆 Hadoop环境的安装与配置 安装伪分布式spark  安装伪分布式scala 步骤一:下载 JDK 安装包(jdk-8u152-linuxx64.tar.gz) 官网地址:https://www.oracle.com/java /technologies /javase-jdk8-downloads.html 步骤二:卸载自带 OpenJDK [root@master ~]# rpm -qa |

    2024年04月27日
    浏览(35)
  • Docker下安装Hadoop和Spark集群_docker 中安装hadoop和spark

    先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7 深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前! 因此收集整理了一份《2024年最新软件测试全套学习资料》

    2024年04月27日
    浏览(40)
  • Spark编程实验一:Spark和Hadoop的安装使用

    目录 一、目的与要求 二、实验内容 三、实验步骤 1、安装Hadoop和Spark 2、HDFS常用操作 3、Spark读取文件系统的数据 四、结果分析与实验体会 1、掌握在Linux虚拟机中安装Hadoop和Spark的方法; 2、熟悉HDFS的基本使用方法; 3、掌握使用Spark访问本地文件和HDFS文件的方法。 1、安装

    2024年04月14日
    浏览(34)
  • Spark和Hadoop的安装

            进入Linux系统,完成Hadoop伪分布式模式的安装。完成Hadoop的安装以后,再安装Spark(Local模式)。         使用hadoop用户名登录进入Linux系统,启动Hadoop,参照相关Hadoop书籍或网络资料,或者也可以参考本教程官网的“实验指南”栏目的“HDFS操作常用Shell命令”,使

    2024年04月29日
    浏览(31)
  • Windows运行Spark所需的Hadoop安装

    解压文件  复制bin目录         找到winutils-master文件hadoop对应的bin目录版本         全部复制替换掉hadoop的bin目录文件  复制hadoop.dll文件         将bin目录下的hadoop.dll文件复制到System32目录下    配置环境变量  修改hadoop-env.cmd配置文件 注意jdk装在非C盘则完全没问题,

    2024年02月10日
    浏览(43)
  • 【大数据技术Hadoop+Spark】Spark架构、原理、优势、生态系统等讲解(图文解释)

    Spark最初由美国加州伯克利大学(UCBerkeley)的AMP(Algorithms, Machines and People)实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。Spark在诞生之初属于研究性项目,其诸多核心理念均源自学术研究论文。2013年,Spark加

    2024年01月16日
    浏览(51)
  • ubuntu下Hadoop以及Spark的伪分布式安装:一

    1.1 安装前说明: 很多初学者在安装的时候会碰到各种各样的问题,尤其各种版本的搭配问题。所以特意做一个初步安装的引导,希望大家都能一次调试出来。 经过测试,jdk11 + scala2.13.13 + hadoop3.3.6+spark3.5.1,这是暂时来说scalsa2能支持的最完美的搭配。Hadoop能支持到的java最完

    2024年04月23日
    浏览(51)
  • spark入门案例以及sbt安装与打包(Linux环境)

    创作初衷:由于在这上面翻过太多的烂文章(博主自己都没搞懂就“写作抄袭”),才写下此文(已从重装系统做过3次测试,没有问题才下笔),文章属于保姆级别。 ~~~~~~~~~~~~~~~~~~~~~~~~~创作不易,转载请说明~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本文相关的版本信息(没部署Hadoop,本文环境

    2024年02月01日
    浏览(40)
  • 大数据实战(hadoop+spark+python):淘宝电商数据分析

    虚拟机:Ubuntu 20.04.6 LTS docker容器 hadoop-3.3.4 spark-3.3.2-bin-hadoop3 python,pyspark, pandas,matplotlib mysql,mysql-connector-j-8.0.32.jar(下载不需要积分什么的) 淘宝用户数据 以上的技术积累需要自行完成 创建容器(##ubuntu的代码块,在ubuntu中运行,无特殊说明的在docker中运行) 更新软件

    2024年02月11日
    浏览(71)
  • Hadoop与Spark:大数据处理框架的比较与选择

    Hadoop与Spark:大数据处理框架的比较与选择 在大数据的时代背景下,数据处理和分析的需求日益增长。为了满足这些需求,开发者们创造了许多大数据处理框架,其中最为人们熟知的可能就是Hadoop和Spark了。这两者各有其优势,选择哪一个取决于你的具体需求。下面我们将对

    2024年01月25日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包